
Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1215

Scheduling Tasks to Minimize the Total

Computation and Communication Makespan

Teofilo F. Gonzalez

Department of Computer Science, University of California, Santa Barbara, CA USA 93106

Email: teo@cs.ucsb.edu

--ABSTRACT--

We study the problem of scheduling tasks in a distributed system where the data (and code) for a program may

reside on a processor different from the one where it will be executed. The scheduling of the tasks is more

complex than classical ones as one must not only take into consideration the processing times but also

communication times. We present an off-line polynomial time approximation algorithm for the case when the

processors can be partitioned into storage (client) and processing (server) nodes. Our algorithm is the first

constant ratio approximation algorithm for this problem. Then we discuss generalizations of our problem,

including an on-line distributed version, as well as versions that allow tasks to access multiple input files and

generate multiple output files that reside in one or more nodes.

Keywords –Approximation Algorithms, Dual Objective Functions, Minimize Makespan, Scheduling.

--

Date of Submission: September 13, 2011 Revised: November 22, 2011 Date of Acceptance: November 26, 2011

--

1. INTRODUCTION

Scheduling problems arising from several research areas

have been studied for more than five decades. The initial

work was in operations research, computer science, and

applied mathematics. More recently scheduling has been

studied in the context of parallel, cluster, and grid

computing. Our model falls under the broad umbrella of

scheduling data-intensive distributed applications as well

as ``cloud computing'' scheduling, i.e., where storage and

processing of a task will be somewhere in the cloud. In

this paper we discuss the problem of scheduling in

distributed systems where the data (and code) for a

program might not reside on the node where the task is to

be processed. This scheduling problem is more complex

than traditional ones. The complexity arises because in

addition to balancing the processing workload, we also

need to balance the time required to transmit the data (and

code) needed by the programs. Algorithms for problems

related to our problem appear in Refs. [1, 2, 3, 4, 5, 6, 7,

8]. This papers present heuristic and metaheuristics to

generate sub-optimal solutions for different variations of

our problem and present the results of an experimental

evaluation of the performance of their algorithms. None of

these algorithms have been shown to always generate

schedules with a makespan that to be within a fixed

percentage of the optimal one. On the other hand, our

analysis is theoretical. We show that our algorithm is the

first constant ratio approximation algorithm for our

scheduling problem, i.e. the schedules generated have a

makespan that is guaranteed to be withina given fixed

percentage, independent of any problem parameters, of the

optimal one.

The system (``cloud'') consists of a set ofM nodes denoted

by 1, f2, …, m. Each node j consists of mj identical

processing elements (processors). Forexample,a node may

be a parallel processor system, a cluster of computers,or a

single computer with one or more cores.There are n

independent tasks denoted by 1, 2, …, n to be processed.

Processing task i by any processing element (processor)

takes ti units of time,since all the processing elements are

assumed to have the same processing capability.

The data (and code) for each task i is initially located at

node si and, depending on the number of processing

elements at the nodes and the total demand on the system,

the task may or may not end up being scheduled for

execution by a processor at node si. If task i is processed at

another node, then the data
1
 required by the task needs to

be transmitted from node si to the node where task i is to

be processed. The transmission time is di time units. All

of the task's data must be available at the processing node

before any of its processors can begin executing the task.

The data communication between nodes is performed

through a channel in the communication network N. Node

j has cjbi-directional channels. The bi-directional

channelsare labeledin-channels and out-channels with

respect to node i when the channels are used to bringin

data or send out data, respectively. We assume that

any one-to-one interconnection between nodes through the

channels is supported by the communication network, and

the routing to achieve the data interchanges can be

computed in polynomial time. These assumptions are not

too restrictive as a large number of interconnection

networks satisfy these properties. We do not include this

1 Hereafter we use ``data'' needed by a task to refer to the ``data and

code'' needed to process the task.

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1216

time in our analysis as it depends on the communication

network. Once we determine that task i is to be processed

by a processor at node j, we need to specify the out-

channel to be used at node si, the in-channel to be used at

node j, and the time interval when the data for task i is

transmitted from node si to node j. Of course, the

restriction is that the data from two or more tasks cannot

be transferred using the same in-channel or the same out-

channel at the same time. The objective function is to

construct a minimum makespan computation schedule for

the tasks that depends on the communication schedule

constructed for the data communications. Fig. 1 depicts a

simple problem instance defined over five nodes. This

problem instance is fully specified in our example.

In this paper we consider the bipartite version of the

problem when the set of nodes is partitioned into two sets

called: Storage (Client) and Processing (Server) nodes.

The data needed by the tasks is stored at the storage nodes

and the processing of the tasks is to be performed at the

processing nodes. To simplify the notation, assume that

the first w nodes (1, 2, …, w) are the storage nodes, and

the remaining ones (w+1, w+2,…, m) are the processing

nodes. It is assumed that the number of channels, cj, for

each of the processor nodes is equal to the number of

processors at node nj. A 1-1 correspondence between

processors and channels at each processing node is

established
2
. For the storage nodes,

ci> 1.

Example

There are five nodes (m=5) and w=3. Nodes 1 – 3 store

data for the tasks and nodes 4 and 5 process the tasks. The

number of processors (mi) and number of channels (ci) at

each node are given in Table 1. There are fifteen tasks

(n=15). The processing time (ti), communication time (di)

and the index of the node (si) where the data resides for

each task is given in Table 2.

Given a set of independent tasks, their location and data

requirements, our problem is to find the node, processor,

and time at which each task is to be executed, as well as

the (in- and out-) channels and time where the data (file)

required by each task is to be transmitted. Our algorithms

attempt to balance as much as possible the processing and

communication times. We establish bounds between the

balance in our schedules and the best possible

communication and processing balance.

In this section, we discuss some well-known scheduling

problems and their algorithms that our proposed algorithm

invokes as sub-procedures (Sections 2.1 and 2.2), and we

define and discuss the d-component vector scheduling

problem as well as a new approximation algorithm, for

d=2, that generates provably good solutions (Section 2.3).

2 This assumption simplifies the communication model. The number

of channels may be different than the number of processors. However,

such systems are equivalent to our model by using virtual channels. The
resulting problem is a generalization of our problem and for brevity it

will not be discussed further.

This approximation algorithm is a central component of

the scheduling algorithm proposed in this paper. Our

scheduling algorithm is discussed in Section 3. In Section

4we discuss generalized versions of our problem. These

versions allow the input data files to reside in multiple

storage nodes and the tasks generate output files to be

stored in one or more storage nodes.

Table 1: Number of Processors (mi) and Number of

Channels (ci) for each Node in our Example.

i 1 2 3 4 5

mi 0 0 0 4 2

ci 1 3 2 4 2

Table 2: Processing and Communication Times, and Index

of the Node where the Data for each Task Resides for all

the Tasks in our Example.

i 1 2 3 4 5 6 7 8

ti 70 60 61 70 31 40 30 40

di 20 51 25 25 60 70 30 100

si 1 1 2 2 2 2 2 2

i 9 10 11 12 13 14 15

ti 50 55 5 5 60 18 5

di 14 14 45 60 5 5 76

si 2 2 3 3 3 3 3

Figure 1: Our Example.

Our results are for the centralized (offline) scheduling

problem, where the scheduling is performed by a central

processor that knows all the global information.In Section

5 we discuss the portions of our scheduling algorithm that

can be performed significantly faster in a distributed

environment, i.e., when processors only know local

information.

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1217

2. PRELIMINARIES

To In Sections 2.1 and 2.2 we briefly survey well known

scheduling problem as well as exact and approximation

algorithms for their solution. In Section 2.3 we discuss a

new approximation algorithm for the 2-component vector

scheduling problem. These algorithms are used by our new

approximation algorithm presented in this paper (Section

3).

2.1. Scheduling Identical Machines.

The problem of scheduling independent jobs on identical

machines is well known and has been studied for the past

four decades. The input to the problem is a set of n

independent jobs to be scheduled for processing by m

identical machines. Each job has execution time

requirement given by the positive integer pi. A schedule is

an assignment of jobs to machines in such a way that at

any given time every machine is scheduled to process at

most one job and each job is assigned to at most one

machine. A schedule is non-preemptive if every job is

scheduled for processing during one continuous time

interval. Otherwise the schedule is calledpreemptive. The

makespan (finish time) for schedule S, denoted by f(S), is

the latest time a machine processes a task. The minimum

makespan identical machine scheduling problem is to

construct a schedule with minimum finish time

(makespan). Constructing a minimum makespan

preemptive schedule for any instance of this problem takes

linear time with respect to the number of jobs and

machines. However, the corresponding non-preemptive

scheduling problem is NP-hard. There are many well-

known algorithms to generate near-optimal non-

preemptive schedules, e.g., list [9] and LPT [10]

scheduling. The former procedure generates schedules in

O(n log m) time with a makespan that is within 2 times the

optimal makespan, and the latter algorithm takes O(n log

n) time and generates schedules with makespan at most

4/3 - 1/(3m) times the optimal makespan. Additional

information about approximation algorithms for

scheduling identical processors can be found in Refs. [11,

12].

II.2. Openshop Scheduling.

An openshop consists of m ≥1 machines, and n ≥ 1 jobs.

Each job consists of m tasks. The j
th

 task of job i must be

processed by the j
th

 machine for pi,j>0 time units. We use r

to denote the number of tasks with non-zero processing

requirements and we use the triplet (P,n,m)to denote a

problem instance, where P represents the set of processing

times {pi,j}. A schedule is an assignment of each task to its

corresponding machine for a total ofpi,j time units in such a

way that at each time unit at most one task from each job

is assigned to any of the machines, and each machine is

assigned at most one task at a time. A non-preemptive

schedule is one where every task must be scheduled for

processing without interruption. In a preemptive schedule,

the processing of a task may be interrupted and resumed at

a later time. The makespan (finish time) for schedule S,

denoted by f(S), is the latest point in time a task is

scheduled to be processed by a machine. The minimum

makespan openshop scheduling problem is to construct a

schedule with minimum finish time (makespan).

Given an instance (P,n,m) of the openshop problem, let yj

be the total time that machine j must be busy processing

tasks, and xi be the total time that job i needs to be

processed. Let t = max {xi,yj}.Gonzalez and Sahni [13]

have shown that there is always a preemptive schedule

with makespan t and one such schedule can be constructed

in O(r(min{r,m
2
}+m log n)) time

3
. The makespan is best

possible. Furthermore, when all the pi,js are integers, there

is a schedule where preemptions occur only at integer

points, and one such schedule is generated by the

algorithm in Ref. [13]. For non-preemptive scheduling, the

problem is NP-hard even when there are only three

machines. There are several approximation algorithms for

both versions of the problem.The fastest and simplest one

is an O(r log m) time list scheduling algorithm that

generates schedules with makespan at most two times the

optimal makespan. This algorithm was initially proposed

by Racsmany and subsequently analyzed by Shmoys,

Stein and Wein [17]. Additional results for the openshop

problem are discussed in Ref. [11].

II.3. Vector Scheduling on Identical Machines.

In this paper we model a portion of our problem as a 2-

component vector scheduling problem. The vector

scheduling problem for identical machines is a well-

known generalization of the problem discussed in Section

2.1. The difference is that the processing requirement for

each job is given by a d-component vector, (pi,1, pi,2, …,

pi,d). A schedule for the m machines is just an assignment

of each job to a machine. For this problem we are just

interested in non-preemptive schedules. The makespan

(finish time) of a schedule S, denoted by f(S), is the

maximum over each machine j and component k of the

sum of the processing times of the k
th

 component of the

jobs assigned to machine j in schedule S. In other words,

minimize maxj=1,…,mmaxk=1,…,d∑job iassigned to machine j pi,k.

There is a simple O(n log m) time algorithm that generates

schedules with makespan at most d+1 times the optimal

makespan. As it is pointed out in Ref. [18], the origin of

this algorithm is unknown. This algorithm is a (single

component) list scheduling algorithm using as the

processing times for each job the sum of the d processing

times for the d components of the job. Chekuri and

Khanna [18] developed an algorithm that generates

schedules with makespan at most O(ln
2
 d) times the

optimal. They also present another approximation

algorithm with a smaller approximation ratio, O(ln d), for

the case when d is bounded by a constant. These two

approximation algorithms take polynomial time, but the

3 The preemptive openshop problem can be modeled as the problem of

coloring the edges in a multigraph. There are several algorithms to color

such graphs [14, 15, 16]. However the fastest of these algorithms is
currently slower than the one in [13]. That is why we use the algorithm

in Ref. [13]

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1218

constants associated with the time complexity bounds are

large. The constants associated with the big-oh notation

for the approximation ratio is not small. Chekuri and

Khanna [18] developed a polynomial time approximation

scheme (PTAS) for the case when d is bounded above by a

constant. In other words, they showed that the vector

scheduling problem can be approximated to within any

constant ε in polynomial time. However this algorithm is

very slow in practice. In Subsection 2.3 we present a linear

time algorithm that generates schedules with makespan at

most 2times the optimal makespan for d=2. This algorithm

is different from the one reported by Kellerer and Kotov

[19] for the vector packing problem for d=2, which has

some similarities to our problem and it is a generalization

of the bin packing problem. It does not seem possible to

use this algorithmto establish the approximation ratio of 2

for the 2-component vector scheduling problem, or vice-

versa. Also, our algorithm takes linear time, whereas the

one in [19] takes O(n log n) time. The constant associated

with the time complexity bound is very small for both

algorithms.

2.3.1. APPROXIMATING THE TWO COMPONENT

VECTOR SCHEDULING PROBLEM.

In this section we present an algorithm to construct a

 schedule with makespan at most twice of the optimal one

for the 2-component vector scheduling problem. The 2-

component vector scheduling problem consists of n

independent jobs and m identical machines. Job i has the

2-component pair (xi,yi) specifying its 2-component

processing times. Define

X= max{Σ xi /m, max{xi}},

Y = max{Σyi /m, max{yi}},

L = max{X, Y}.

 Clearly, the optimal makespan is at least L.

We will apply our algorithm to the problem instance given

in our example as follows: the number of processors m is

6, the number of jobs n is 15, the xis correspond to the tis

and the yis correspond to the dis (i.e., the tasks in our

example correspond to the jobs in the 2-component

scheduling problem). Clearly, X=Y=L=100.

During the execution of our algorithm every machine is

assigned a set of jobs. We use Gj to represent the set of

jobs assigned to processor j. We define Xj (Yj) as the sum

of the x-component (y component) of the jobs assigned to

processor j (jobs in set Gj). Initially each processor j has

zero tasks assigned, so Xj = Yj = 0. A processor is said to

be of type A (available), Fx (filled in x), Fy (filled in y) and

Fxy (filled in x and y) depending on the conditions listed

below: A processor is said to be of type

A if 0 ≤Xj≤L & 0 ≤Yj≤ L

Fx if L <Xj≤ 2L & 0 ≤Yj≤ L;

Type

Fy if 0 <Xj≤ L & L <Yj≤ 2L;

Fxy if L <Xj≤ 2L & L <Yj≤ 2L.

Our algorithm assigns all jobs in such a way that all

processors will be of type A, Fx, Fy and Fxy. Therefore our

schedule has makespan at most 2L. To maintain the

invariant our algorithm will rearrange the schedule at each

iteration so that there is at least one type A processor

where the i
th

 jobs will be assigned.

We say that a job i fits in processor j if the x-component of

job i plus Xj is at most 2L, and the y-component of job i

plus Yj is at most 2L. Processors j and k are said to be x-

compatible and y-compatible if Xj+ Xk≤ 2L and Yj + Yk≤

2L, respectively. Processors j and k are said to be xy-

compatible if they are both x-compatible and y-

compatible. Processors j and k are said to beincompatible

if they are not x-compatible or y-compatible. Initially

every processor is said to be unmatched. During the

execution of our algorithm we will identify pairs of

processors and match them together.Each processor is to

be matched to at most one other processor. Every pair of

matched processors will be incompatible. Therefore there

can be at most m-2 matched processors. Our algorithm is

defined below:

Procedure Approx((x1, Y1),(x2, y2), …, (xn, yn), n, m);

Initially processor j has zero tasks 1 ≤ j ≤ m(Gi=Ø)

 and therefore all processorsare of type A;

fori= 1 tondo

while there are no type A processors do

Let j be an unmatched type Fx processor;

Let k be an unmatched type Fy processor;

// Later on we show processors j and k alwaysexist

case
:Processors j and k are incompatible:

Match processors j and k;

break;

:Processors j and k are xy-compatible:

//Delete all jobs from processor k and assign

 them to processor j;

Gj Gj Gk;

 Gk Ø;

break;
 :Processors j and k are x-compatible:

while a job l assigned to processor k

 fits in processor jdo

// Delete job l assigned to processork and

// assign it to processor j;

 Gj Gj {l};

 Gk Gk / {l};

endwhile

break;

:Processors j and k are y-compatible:

while a job l assigned to processor j fitsin

processor kdo

Delete job l assigned to processor

j and assign it to processor k;

Gk Gk {l};

Gj Gj / {l};

endwhile

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1219

 break;
endcase

 endwhile
 Let j be a type A processor;

// Assign job i to processor j;

 Gj Gj { i };

endfor
 End of Procedure Approx

Let us now apply algorithm Approxto the instance of the 2-

component vector scheduling problem constructed from

the problem instance given in our example. Initially all the

five processors are type A. The first two iterations tasks 1

and 2 are assigned to processor 1and the processor

becomes type Fx. The next two iterations tasks 3 and 4 are

assigned to processor 2and the processor becomes type Fx.

The next 8 iterations assign tasks to each of the remaining

processors and all the processors become type Fx or Fy.

The status of all the processors after the first 12 iterations

is given in Table 3.

Table 3: Assignment of the First Twelve Tasks in our

Example.

l 1 2 3 4 5 6

G_l {1,2} {3,4} {5,6} {7,8} {9,10} {11,12}

X_l 130 131 71 70 105 10

Y_L 71 50 130 130 28 105

Type Fx Fx Fy Fy Fx Fy

When the algorithm considers task 13, none of the

processors are type A. So the algorithm selects a processor

typeFx and one type Fy. Let’s say the algorithm sets j=1

and k=3. Processors j and k are incompatible as

Xj+Xk=130+71>200=2L and Yj+Yk=71+130>200=2L.

So the algorithm matches these processors to each other

(see Table 4) and then selects two unmatched processors

(one type Fx and the other type Fy). Lets say the algorithm

sets j=2 and k=4. This pair is y-compatible. The algorithm

transfers task 3 from processor j to k and processor j

becomes type A. Task 13 is then assigned to processor j.

As a result of this processor j remains type Fx and

processor k becomes type Fxy (see Table 4).

When the algorithm considers task 14, none of the

processors are type A so the algorithm selects a processor

type Fx and one type Fy. Let’s say the algorithm sets j=5

and k=6. This pair is xy-compatible. The algorithm

transfers tasks 11 and 12 from processor k to j. Processors

j becomes type Fxy and processor k becomes type A. Then

task 14 is assigned to processor 6 and processor 6 remains

type A. In the next iteration task 15 is assigned to

processor 6 (which is type A) and the processor remains

type A. Table 4 shows the final assignment of the tasks to

the processors.

Lemma 1:Algorithm Approx generates a schedule with

finish time at most 2Lfor any 2-component vector

scheduling problem instance, in O(n+m) time.

Proof: First we establish correctness and prove the

approximation bound. Then we prove the time complexity

bound. If at each iteration a jobs is assigned to a processor

type A, then at the end of the algorithm every processor

will be of type A, Fx, Fy orFxy, and the schedule will have

makespan at most 2L. The proof is by contradiction.

Suppose that there are problem instances for which the

above algorithm fails to assign a job to a processor. Let I

be any of these instances. As our algorithm processes

instance I it will eventually encounter a job i that cannot

be assigned to any of the processors. Consider now the

first time during the i
th

 iteration when the condition of the

while statement was true, i.e., none of the processors were

type A. Let r be the number of processors that are type Fxy

or matched.

Table 4: Final assignment of all the tasks in our example.

l 1 2 3 4 5 6

Gl {1,2} {3,4} {5,6}
{3,7,

8}

{9,10,

11,12}
{14,15}

Xl 130 130 71 131 115 23

Yl 71 30 130 155 133 81

type M (3) Fx M (1) Fxy Fxy A

We claim that r is less than, the number of processors, m,

and that there must be at least one unmatched type Fx

processor and one unmatched type Fy processor. The

proof of the claim follows from the fact that if there were

zero type A processors and zero type Fx processors, then

the sum of the y-component of all of the jobs previously

assigned to the processors would exceed mL, which

contradicts the definition of L. Similar arguments can be

used to prove that there must be at least one processor type

A and one processor type Fy.

So, there is at least one processor j type Fx and one

processor k type Fy. There are several cases depending on

the compatibility of processors j andk.

Case 1: Processor j and k are incompatible.

In this case processors j and k will be matched to each

other and the value of r increases by two. By using

arguments similar to the ones above one can show that the

new value for r is less than m and there is an unmatched

processor j type Fx and another unmatched processor k

type Fy. There are no type A processors and the condition

of the while Statement must hold at the next iteration.

Case 2: Processor j and k are xy-compatible.

In this case the algorithm moves all the jobs assigned to

processor k to processor j. The assignment of processor j

is feasible as processor j and k were xy-compatible. Also,

processor k becomes type A and task i is assigned to it. But

this contradicts the previous assumption that task i could

not be assigned.

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1220

Case 3: Processors j and k are x-compatible.

Since processor j is type Fxwe know that L <Xj≤ 2L and 0

≤ Yj≤ L, and since processor k is type F_y we know that 0

< Xk≤ L and L ≤ Yk≤ 2L. Since processors j and k are x-

compatible and all jobs have their y-component smaller

than L, we know that we can reassign at least one job from

processor k to processor j. The algorithm reassigns a

subset of jobs assigned to processor k to processor j. When

no more jobs can be reassigned from processor k to

processor j, we know that processor j is type Fxy, because

processors j and k are x-compatible, processor j is type Fx,

and processors j and k were not y-compatible to begin

with. Processor k will either become type A or remain type

Fy, and r will be increased by 1. In the former case task i

is assigned to processor k. But this contradicts the previous

assumption that task i could not be assigned. In the latter

case by using arguments similar to the ones above one can

show that the new value for r is less than m and there is an

unmatched processor j type Fx and another unmatched

processor k type Fy. There are no type A processors and

the condition of the while statement holds at the next

iteration.

Case 4: Processors j and k are y-compatible.

The proof for this case is omitted as it is similar to the one

for Case 3.

In the above four cases either we contradict our earlier

assumption or the value of r increases by at least one and

the condition of the while loop will hold. After no more

than m iterations (of the while loop) we either reach a

contradiction or r becomes larger than m. But as we stated

before, this leads to a contradiction.

This completes the proof of correctness and the

approximation bound. To complete the proof of the

lemma, we need to prove the time complexity bound.

An implementation detail we have not discussed is that we

keep four (doubly-linked) lists of processors, one for each

type of processors, and an array (indexed by a processor

number) pointing to the elements in the doubly-linked list.

We also keep the number of processors of each type.

Therefore, finding a processor of certain type, know if

there are zero processors of certain type, or

deleting/adding a processor of a certain type, can be easily

implemented to take constant time. Every time we iterate

through the while loop we will increase, r, the number of

matched processors plus the number of type Fxy processors

by at least one. In the proof of the first part of this lemma

we show that r will always be smaller than r-1. Since r is

never decreased, it follows that the while loop is executed

at most r-1times. The body of the while loop can be easily

implemented to take constant time. The for-statement is

executed n times and each time it takes constant time,

excluding the time taken by the while loop which is being

counted separately. Therefore the time complexity is

O(n+m). This concludes the proof of the lemma.

There are problem instances for which our algorithm, or

for that matter any algorithm, does not generate solutions

with makespan significantly smaller than 2L. For some of

those problem instances the optimal makespan is close to

2L. Therefore, there may exist simple algorithms to

construct schedules with makespan significantly better

than 2*OPT, where OPT is the optimal makespan. As we

shall see, even if such algorithms exist they will have

minimal impact in our analysis.

3. APPROXIMATING THE BIPARTITE PROBLEM.

Let us outline our four-phase approximation

algorithm.Our approach begins by assigning tasks to the

processor where they are to be processed in such a way

that the computing and communication time are balanced

(suboptimally), and then the actual schedules are

constructed. The schedules generated by our algorithm

consist of two parts: a communication schedule that

specifies when all the communications take place, and a

computation schedule that specifies when all the

processing of the tasks takes place. We say that we are

approximating the problem by ``restriction'' as our initial

approach performs first all the communications and then,

at a separate time, all the computation. But, since the tasks

will be processed in the same order in which their data

arrives at the in-channel associated with the processor,

then it may be possible to overlap at least portions of these

schedules. So our approximation technique is actually

``restriction'' followed by a posteriori ``overlapping''. Our

general approach is as follows.

 Determine the processor where each task i is to be

executed andidentify the corresponding in-channel to

be used to receive the data for task i.

 Determine the out-channel to be used to send the data

for task i.

 Construct the communication schedule Comm, i.e.,

determine the actual time when the data required by

the tasks is to be sent from the storage nodes via the

out-channel to the receiving processing nodes via the

in-channel.

 Construct the computation schedule Comp, i.e.,

determine the actual time when each task is to be

processed.

These four steps are implemented by solving different

scheduling problems. The first step is implemented by

solving a 2-component vector scheduling problem; step

two by scheduling a set of independent jobs on identical

machines; the third one by solving an openshop

scheduling problem instance; and the last one, is the

simplest one, as the ordering is determined by the ordering

of the data arriving to the processor. In what follows we

explain in detail all the steps in our procedure and then we

formally specify our algorithm. As we define the steps of

our algorithm we will be applying it to the problem

instance given in our example.

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1221

Step 1: Determine the processor and in-channel to be used

to process and receive the data for each task. This is

accomplished by constructing a schedule S1 (by the

algorithm given in Section 2.3.1) for the 2-component

vector scheduling problem P1 defined below. Let p be the

total number of processors (as well as the number of in-

channels) at the processing nodes, i.e., p =Σj=w+1,…, mnj.

The first nw+1 processors are located at node w+1, the next

nw+2 processors at node w+2, and so on.

We construct the instance P1 of the 2-component vector

scheduling problem as follows. For each task i we define

job i with Ti as its x-component and di as its y-component.

Define

T= min {Σ ti/ p, max {ti} },

D = min {Σdi / p}, max{di} }, and

L = max {T, D }.

Clearly the x-component and y-component of each one of

the tasks is a value between 0 and L. The sum of the x-

component and y-component of all the tasks is at most pL,

respectively. We construct a schedule S1 for the instance

P1 by using the linear time algorithm given in Section

2.3.1. All the tasks assigned to the same machine in

schedule S1 are assigned to the same processor for their

execution and their data is to be received by the in-channel

corresponding to the processor.

As we established in Section 2.3.1 all the tasks assigned to

the same machine in schedule S1are such that the sum of

their x-component is at most 2L and the sum of their y-

component is at most 2L. Therefore, every processor will

be running tasks for at most 2L time units, and every in-

channel will be receiving data for at most 2L units of time

(later on we construct the actual schedules specifying

when these operations will take place).

Name the four processors at node 4 as processors 1, 2, 3,

and 4; and the two processors at node 5 as processors 5

and 6. The corresponding in-channels are referred to as I1,

I2, I3, I4, I5, and I6. In Section 2.3.1 we applied our 2-

component vector scheduling algorithm to the instance

given in our example. This is instance P1 defined above

and the resulting schedule is S1. The tasks assigned to the

six processors (represented by the sets Gj) are given in

Table 5 (constructed from Table 4). We use Tj (Dj) as the

sum of the processing (communication) time requirements

of the tasks assigned to processor j.

Table 5:Task Assignments to Processors (and

corresponding In-channels) for Schedule S1 for our

Example.

j I1 I2 I3 I4 I5 I6

Gj {1,2} {4,13} {5,6}
{3,7,

8}

{9,10,

11,1}
{14,15}

Tj 130 130 71 131 115 23

Dj 71 30 130 155 133 81

Step 2: Now let’s determine the out-channel to be used to

send the data for each task to the processor where the task

is to be executed. Let q be the total number of out-

channels in the storage nodes, q = Σj=1, …, wcj (remember cj

is the number of out-channels in node j). For every storage

node k, our algorithm partitions the tasks' data files stored

in it into cj groups. The data for each task assigned to each

group is to be sent via a different out-channel. The

partitioning should be such that the sum of the

communication times of all the data for the tasks assigned

to the out-channels is balanced as much as possible. It is

well known that this partitioning problem is NP-hard

under the assumption that all the data needed by a task has

to be transmitted using the same channel
4
. For this version

of the problem, one can generate a near-optimal solution

by modeling the partitioning problem as an instance of the

problem of scheduling independent jobs on identical

machines (which is the same as the single-component

vector scheduling problem). Each task corresponds to a

job and the execution time of each job is the time required

to transmit the data for the corresponding task. We can use

any of the scheduling algorithms discussed in the Section

2.1 to generate a near-optimal schedule which is then used

to obtain near-optimal balanced partitions. If we use list

scheduling [9] then one can construct schedules with

makespan at most 2 times the makespan of an optimal

schedule in O(n log m) time. On the other hand, LPT

generates schedules with makespan (finish time) at most

4/3 - 1/(3m) times the makespan of an optimal schedule

[10]in O(n log n) time. We use P2 to denote the collection

of scheduling problems just defined and S2 to denote the

set of schedules generated.

For our example, the out-channel at node 1is namedO1, the

three out-channels at node 2 as O2, O3, and O4, and the two

of node 3 as O5 and O6. Using the task indices as the list

(for the list scheduling algorithm) one can easily construct

list schedules for each of the three storage nodes when

considering the di values as the processing times for the

jobs. Table 6 shows a possible list schedule (assignment

of tasks to the out-channels) at each node. Note that one

may generate many different list schedules. Our results

hold, no matter which list schedule is generated. The total

communication time of the tasks is shown in the next

column.

Table6: Assignment of Tasks to Out-channels for our

Example.

Node
Out-

channel

Tasks

Assigned

Total

Comm.

Time

1 O1 {1,2} 71

2 O2 {3,6} 95

2 O3 {4,7,9} 155

3 O4 {5,9,10} 88

3
O5

{11,13,

14,15}
131

3 O6 {12} 60

4 However, if one is allowed to transmit the data using two or more

channels then the problem can be solved in polynomial time. The
resulting schedule would be more complex, but the approximation bound

for the whole algorithm would be the same.

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1222

To summarize the first two steps, we have determined for

every task i the out-channel to be used to send the data it

needs as well as the in-channel to receive it, and the

corresponding processor to execute the task. We just need

to determine the actual time when the data for each task is

to be transmitted and the time at which the tasks are to be

processed in such a way that there are no communication

conflicts, i.e., the data for two or more tasks is not being

sent or received by the same channel at the same time, and

the processing of a task cannot start before the processor

has all the task's data. In other words, we need to construct

the communication schedule Comm and the computation

schedule Comp.

Step 3:The timing of all the communication events is

obtained by modeling the problem as an instance of the

openshop scheduling problem. Before defining the

openshop instance P3 it is convenient to begin by defining

the bipartite graph G consisting of the set of vertices S and

P. Each vertex in set S represents a storage node and one

of its communication out-channels. Similarly, each vertex

in set P represents a processor in a processing node and its

corresponding communication in-channel. At this point

our algorithm knows the out-channel (Step 1) and in-

channel (Step 2) for the transmission of the data for each

task i. This information is used to define the set of edges in

the graph (for our example see Fig. 2). There is an edge

from a vertex i in S to a vertex in j in P if there is at least

one task using the out-channel i and the in-channel j. Note

that several tasks may be represented by the same edge. So

we label each edge by the set of tasks it represents (Fig. 2).

The weight of the edge is the total communication time

needed to transmit the data for all the tasks represented by

the edge. Each node in S represents a job and each node in

P represents a machine in the instance of the openshop

problem P3 we construct. We define as pi,j the weight of

the edge joining vertex i in S to vertex j in P, and zero if

such edge does not exist. Let xi be the sum of the weight of

the edges incident to vertex i in S, i.e. Σjpi,j, let yj to be the

sum of weight of the edges incident to vertex j in P, i.e.

Σipi,j. We define t as max{xi, yj }. From Ref. [13]we know

that there is a preemptive communication schedule S3 with

makespan t for P3 and schedule S3 can be constructed in

polynomial time
5
. From schedule S3 one can easily

construct schedule Comm that gives the specific times

when the data for task i must be transmitted from the

storage node where it resides to the processing node where

it is to be processed using the channels that have been

previously selected.

For our working example, Table 7 shows the execution

time requirements for the jobs (pi,j) computed from the

bipartite graph given in Fig. 2 and and the tasks'

communication times given in Table 2. This is problem

instance P3. A possible schedule S3 constructed by the

algorithm given in Ref.[13] for instance P3 defined in

5 Note that this claim has been independently established is many

papers. We use Ref. [13] because their algorithm to generate such
schedules is asymptotically faster than all known algorithm for this

problem.

Table 7 is given in Fig. 3. The horizontal axis represents

time and the rows correspond to the in-channels (or the

corresponding processors). Each block assignment is

labeled with a task index and the out-channel used in the

communication. Note that the schedule is preemptive, so a

task index may be assigned to two or more time intervals

(block assignments). However, at no point in time an out-

channel is used by two or more tasks, simply because the

out-channel can only be sending one data set at a time. In

Appendix I we give the schedule with respect to the out-

channels. I.e., the horizontal axis represents time and the

rows correspond to the out-channels. Each block

assignment is labeled with a task index and the in-channels

used in the communication.

Figure 2: Bipartite Graph Constructed for our Example.

Table 7: Openshop Instance P3 for our Example.

Jobs\Machines 1 2 3 4 5 6 Xi

1 71 - - - - - 71

2 - - 70 25 - - 95

3 - 25 - 130 - - 155

4 - - 60 - 28 - 88

5 - 5 - - 45 81 131

6 - - - - 60 - 60

Yj 71 30 130 155 133 81

Step 4: The computation schedule Comp is constructed in

this last stage. I.e., we determine the exact times when the

processing of the tasks will take place. Since we already

know which tasks are to be processed by each of the

processors, the ordering of the tasks may be arbitrary.

However, to reduce the makespan for the schedule of each

processor it is better to use the ordering given by the time

when all the data for the tasks arrives at the corresponding

in-channel. Each task assigned to processor j will be

scheduled for execution starting at the latest of { t1, t2},

where t1 is the time at which all the tasks in the ordering

for

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1223

Figure 3: In-channel Communication Schedule Constructed for problem P3 for our Example.

processor j before task i have completed processing and t2

is the time at which all the data for task i is available at

processor j.

Using the communication schedule given in Fig. 3 one

constructs (as defined above) the computation schedule for

our example. The resulting schedule is given in Fig. 4.

Our four-phase algorithm is formally defined below:

Four-Phase Algorithm
Let q = Σj=1,…,cnj; //number of out-channels

Let p = Σj=c+1,…,mnj; //number of processors and in-channels

Step 1: Determine the processor where each task i is to be

executed and identify the corresponding in-channel

to be used to receive the data for task i.

Construct the instance P1 of the 2-component vector

 scheduling problem as follows.

For each task i we define its x-component asti and its

y-component as di.

Let T=min { Σti / p }, max {ti} },

Let D =min { Σdi/ p, max {di} }

Let L =max { T, D }

Construct a schedule S1 for P1 via the algorithmgiven in

 Section 2.3.1;

Assign all the tasks corresponding to the jobs scheduled

on the same machine in S1 to the same processorand

corresponding in-channel.

Step 2: Determine the out-channel to be used to send the

 data for task i.

For each storage node k define an instance of the

problem of scheduling independent jobs on

identical machines. For each task stored at node k,

define ajob with execution time equal to dj, the

timerequired to transmit the data fortask j, and

definethe number of machines as ck.

Use list scheduling[9]to construct a non-preemptive

schedule for each storage node.

The combined problems are called P2 and the set

of schedules generated is S2.

All the tasks corresponding to the jobs assigned to the

same machine in S2 will be using the same

out-channel.

// At this point we know for every task i the

// out-channel and in-channel used to transmit the

// data it needs, as well as the processor that will

// execute the task.

// In the next steps we determine exactly when all of

// these operations take place.

Step 3: Construct the communication schedule Comm,

i.e., determine the actual time when the

datarequired by the tasks is to be sent from the

storagenode via the out-channel to the receiving

processing node via the corresponding in-channel.

Define the bipartite multigraph G=(S P,E).

There is a vertex in S for each storage node and one of

 its communication out-channels.

There is a vertex in P for each processor in a processing

 node and its correspondingcommunication

in-channel.

There is an edge from vertex i in S to vertex in j inP if

 there is at least one task using both the out-channel

i and the in-channel j.

Label each edge by the set of tasks it represents. The

 weight of the edge { i, j } denoted by pi,j isthe total

 communication time needed to transmit the data for

 the tasks represented by the edge.

Let xi = Σjpi,j andyi = Σipi,j.

Let t= max { xi,yj }.

Construct the preemptive schedule S3 for P3 with

makespan t(algorithm in Ref. [13]).

Schedule Comm, which can be easily constructed from

S3, defines the specific times when the data fortask

i must be transmitted from itsout-channel to its in-

channel in such a way that each in-channel and out-

channel transports the data for at most one task at a

time.

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1224

Figure 4: Computation Schedule Constructed for our Example.

Step 4: Construct the computation schedule Comp.

Construct the schedule Comp that specifies for each

processor the order in which the tasks assigned to it

 are to be processed. The ordering foreach processor

is the same one as the order in which their data

arrivesto the processor via the in-channel.

End of Four-Phase Algorithm

Theorem 1:The time complexity for the four-phase

algorithm is O(np (p+log q)) and the algorithm generates

schedules with makespan at most four times themakespan

of an optimal schedule.

Proof:The number of tasks, processors (in-channels) and

out-channels isn, p, and q, respectively.In Step 1 we

construct aninstance of the 2-component scheduling

problem.Constructing this instance takes O(n+ p) time

andconstructing a schedule for the instance takesO(n+ p)

time (Section 2.3.1).

Step 2 constructs q instances of the identical machine

scheduling problem. This can be accomplished in O(n+q)

time and constructing list schedules for all instances takes

O(n log n) time [10].

Assigning the actual time when the data for each task is to

be transmitted from the out-channel to the in-channel is

determined by solving an instance of the openshop

preemptive scheduling problem. Constructing the instance

P3 of the openshop problem takes O(n+p+q) time.

Constructing the schedule S3 for the openshop instance

takes O(np (p+log q)) time, as the number of processors is

p, the number of jobs is q and the number of non-zero tasks

is n)[13].

Step 4 takes time O(n+q), as one uses the ordering of the

data arriving to each processor.

Hence, the overall time complexity is dominated by the

solution to the instance P3 of the openshop problem, which

takes O(np (p+log q)) time.

Let us now determine the approximation ratio for our

algorithm. The total time required to process the tasks

(makespan of the computation schedule Comp) is at most

2L, where L is a lower bound for the total time required for

the processing of the tasks by the p processors and a lower

bound for the total time required to receive all the data by

the p in-channels. The total time required to send all the

data for the tasks by the q processors is at most 2 L', where

L' is a lower bound for the time required to send all the data

by the q out-channels. The solution to the openshop

problem is a communication schedule, Comm, with

makespan at most max { 2L, 2L' }. Since an optimal

makespan for the whole problem, f
*
, is at least max {L, L'},

it then follows that our two schedules (Comm and Comp)

have makespan at most 4 f
*
. This concludes the proof of the

theorem.

Note that we could have used different approximation

algorithms in Steps 2 and 3 that would result in a different

overall approximation ratio. Suppose that in Step 1 and 2

we use approximation algorithms that generate schedules

with makespan f1≤ k1f1
*
 and f2≤ k2f2

*
, respectively. Then the

approximation ratio for the overall algorithm would be k2+

max { k1, k2}.

As you can see, four our example the schedule that we

construct has makespan 235 which is about 60% of the

worst case one (remember that 4L=400). From the proof of

Theorem 1 one can gather that the time complexity is

dominated by the time required to solve the openshop

problem P3. One way to improve the time complexity at the

expense of generating solutions whose objective function

value is farther from optimal, is to replace the optimal

preemptive scheduling algorithm for the openshop problem

by one that generates sub-optimal solutions. The sub-

optimal algorithm is the list schedule algorithm discussed

in Section 2.2. Constructing the sub-optimal schedule for

the instance of the openshop problem takes O(n log q) time

and generates a schedule with makespan at most 4L.

Combining it with the computation schedule we generate a

schedule with makespan at most 6 times the optimal one,

and the time complexity is dominated by O(n log q). Now,

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1225

suppose that we use an approximation algorithm for the

openshop problem that generates solutions such thatf3≤k3f3
*
.

Then the approximation ratio for the overall algorithm

becomes k2 + k3max { k1,k2 }, wherek1 and k2 are as define

above. Table captions appear centered above the table in

upper and lower case letters. When referring to a table in

the text, no abbreviation is used and "Table" is capitalized.

4. GENERALIZATIONS

In this section we consider several generalizations of our

problem. The first one addresses the problem when the

tasks required data resides in more than one node, the

second one deals with the problem when tasks have output

files to be stored at the storage nodes, and the third one

addresses the case when the output files for each task may

reside in multiple nodes. In all cases we show how to

extend our approximation algorithm to provide constant

ratio approximations to these problems.

4.1. Multiple Data Files

Consider now the situation when data for each task resides

in one or more storage nodes. We use the vector Si to

indicate the nodes where the task's data resides.

Corresponding to each vector Si there is a vector Di whose

j
th

 component indicates the time required to transfer the

data for task Si stored at the node specified by the

j
th

component of the Si vector.

The approximation algorithm for the basic case given in the

Section 3 can be easily generalized to solve this problem.

The first phase is exactly as before, except that di is equal

to the sum of all of the values in vector Di. Remember that

in this phase we determine the processor where each task is

to be processed so that the communication and processing

times are balanced. The second phase, where we determine

the out-channel for the data for each program, is in

principle identical to the one in Section 3. The difference is

that each task uses an out-channel on each node where its

data resides. The third step is identical to the one in Section

3, since we know for each data file its out-channel and in-

channel. The fourth phase, where we determine the

processing order for the tasks, is identical to the previous

one, except that we have to take into consideration that all

the data for a task must arrive at the processing node before

one can begin the processing of the task.

The approximation ratio for this case is identical to the one

in the Section 3. The time complexity bound is similar to

the previous one after taking into consideration the fact that

there is more input in this case than for the basic problem.

4.2. Tasks Generating Output Files.

Let’s consider the case where each task i creates an output

file which is to be stored at a given storage node si
’
. The

restriction is that the file will be available for transmission

only after the processing of the task has completed. Letoi

the time required to transfer the file. This problem is

significantly harder than the basic one as one must not only

balance the transfer time (for the input data) and the

processing time, but also the transfer time for the output

files.

The idea behind the approximation algorithm is similar to

the one for the basic case. One important difference is that

instead of using an approximation algorithm for the 2-

component vector scheduling problem we use one for the

three-component problem.

The schedules generated by our algorithm consist of three

parts: an input communication schedule for the input data

communications, a computation schedule for the processing

of the tasks, and anoutputcommunication schedule for

transferring the output files. We initially classify our

approximation technique as ``restriction,'' since we

construct three separate schedules. Then we try to overlap

the three schedules as much as possible. Since the tasks are

processed in the same order in which their data arrives in

the in-channel associated with the processor, most of the

time it is possible to overlap at least portions of the first

two schedules. However the transmission of the output

files might not be in the same order in which the processing

of the tasks is performed, so the overlapping of the

computation and the output communication schedule is

limited and in the worst case non-existent. So our

approximation technique is ``restriction'' followed by a

posteriori ``overlapping''. The general approach for our

algorithm is as follows.

 Determine the processor where each task i is to be

executed, identify the corresponding in-channel to

be used to receive the input data for task i, and

identify the out-channel to set the output file for

task i.

 Determine the out-channel to be used to send the

input data for all tasks.

 Construct the input communication schedule In-

Comm, i.e., determine the actual time when the

input data required by the tasks is to be sent from

the storage node via the out-channel to the

receiving processing node via the in-channels.

 Construct the computation schedule Comp, i.e.,

determine the actual time when each task is to be

processed.

 Determine the in-channel to be used to receive the

output file for task i.

 Construct the output communication schedule

Out-Comm, i.e., determine the actual time when

the output file generated by the tasks is to be sent

from the processing node via the out-channel to

the receiving storage node via the in-channels.

The above steps are implemented by constructing schedules

for several problems. The first step is implemented by

solving a three-component vector scheduling problem; Step

2 by scheduling sets of independent jobs on sets of identical

machines; the third one by solving an openshop scheduling

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1226

problem; and the forth one, the simplest one, as the

processing ordering for the tasks is determined by the

ordering of the data arriving to the processor. Step 5 is

implemented by scheduling sets of independent jobs on sets

of identical machines; Step 6 is implemented by solving an

openshop scheduling problem. In what follows we explain

all the steps in our procedure.

Step 1:Determine the processor, in-channel, and out-

channelto be used to process,receive the input data, and

send the output file for each task, respectively.This is

accomplished by constructinga schedule S1 by any

approximation algorithmfor the three-component vector

scheduling problem P1 defined below.Let p be the total

number of processors (as well as the number ofin-channels

and out-channels)at the processing nodes, i.e.,

p = Σj=w+1, …, m n_j.

The first nw+1 processors are located atnode w+1, the next

nw+2 processors at node w+2,and so on.

We construct the instance P1 of the three-component vector

scheduling problem as follows.For each task i, we define

job i with its x-component as ti,its y-component as di, and

its z-component as oi.Define

T= min { Σti / p, max {ti } },

D= min { Σdi /p, max {di } },

O = min { Σoi /p, max { oi } }, and

L = max { T, D, O }.

Clearly the x-component, y-component and z-componentof

each one of the tasks is a value between 0 and L. The

sumof the x-component, y-component, and z-component of

all the tasksis at most pL,respectively.We construct a

schedule S1 for the instance P1by using any polynomial

time approximation algorithm for the three-

componentvector scheduling problem.All the tasks

assigned to the same machine in schedule S1are assigned to

the same processor for their executionand their data is to be

received by thein-channel corresponding to the

processorand the output file is to be sent using the out-

channel correspondingto the processor.

There is an approximation algorithm that assigns tasks to

the same machine (in schedule S1) in such a way that

thesum of their x-component is at most 3L,sum of their y-

component is at most 3L and thesum of their z-component

is at most 3L (Section 2.3).Therefore,every processor will

be running tasks for at most 3Ltime units, every in-channel

will be receiving data forat most 3L units of time, and every

out-channel willbe sending output data for at most 3L units

of time(later on we specify the actual schedules when

theseoperations take place).

Step 2:Now let’s decide the out-channel to be used to send

the data for each taskto the processor where the task is to be

executed.Let q be the total number ofout-channels in the

storage nodes,q = Σj=1, …, wcj (remembercj is the number of

out-channels in node j).For every storage node k, our

algorithmpartitions the tasks' data stored in itinto cj

groups.The data for each task assigned to each group is to

be sentvia a different out-channel to the nodewhere the

processing of the task will take place.This partitioning

should be in such a way that the sum of the

communicationtimes of all the data for the tasksassigned to

the out-channels is balanced as much as possible, as this

willdecrease the total communication time.We use the same

algorithm as in the Section 3 forthis step.

To summarize the first two steps, we have determined for

every task i the out-channel to be used to send the input

data it needs as well as the in-channel that will receive it,

and the corresponding processor where the task will be

executed. We need to determine the actual time when the

data for each task is to be transmitted and the time at which

the tasks are to be processed in such a way that there are no

communication conflicts, i.e., the data for two or more

tasks is not being sent or received by the same channel at

the same time, and the processing of a task cannot start

before the processor has all the task's data. In other words,

we need to construct the input communication schedule, In-

Comm, and the computation schedule Comp, and the output

communication schedule Out-Comm.

Step 3:The timing of all the communication eventsin the In-

Commschedule is obtained by modeling theproblem as an

openshop scheduling problem and then constructing a

schedule for itas we did in Section 3.

Step 4:The computation schedule Comp is constructed as in

Section3.

Now we know the out-channel and the in-channel for all

the output data files. The actual timing for all the

communications (Out-Comm schedule) is determined in

the next steps.

Step 5:In this step we determine the in-channel for each

output file. This operation isexactly like Step 2 in Section

3, except that we use the in-channels in the storagenodes

and the tasks' output files.

Step 6:In this portion we construct the Out-Comm schedule.

This is exactly asStep 3 in Section 3, but with the out-

channels located at the processing nodesand the in-channels

located at the storage nodes.

The above steps can be easily formalize into the six-phase

approximation algorithm. The following theorem can be

established by using arguments similar to those in used in

the proof of Theorem 1.

Theorem 2:The time complexity of algorithmsix-phase is

O(np (p+log q) + nq (q + log p)) and the algorithm

generates schedules with makespan at most six times the

makespan of an optimal schedule.

As in Section 3 we note that we could have used different

approximation algorithm in Steps 1 and 2 (with

approximation ratios k1 and k2). Also in Step 3 we could

have used an approximation algorithm with approximation

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1227

ratio k3. Suppose that in Step 5 we use an approximation

algorithm that generates schedules with makespan

f5≤ k5f5
*
. Then the approximation ratio for the algorithm is

k2 + k3 * max { k1 ,k2 }+ k3 *max { k1 , k5 }.

V.3. Multiple Output Files

Suppose now that each task creates multiple files to be

stored in one or more storage nodes. In this case we use the

vector Si
’
 to indicate the nodes where the task output files

will be stored. Corresponding to each vector Si
’
 there is a

vector Di
’
 whose j

th
component indicates the time required

to transfer the data for task i stored at the node specified by

the j
th

 component of vector Si
’
.

We extend the approximation algorithm given in Section

4.2 to this problem as follows. The main differences are in

the last two steps which are now similar to the ones for

multiple input files for the algorithm given in Section 4.1.

The approximation ratio for this case is identical to the one

in the Section 4.2. The time complexity bound is similar to

the one in Section 4.2 after taking into consideration the

fact that the size of the input is larger than for that problem.

5. DISCUSSION

We have presented a four-phase algorithm that takes

O(np (p+log q)) time and generates schedules with

makespan at most four times the makespan of an optimal

schedule for the case when the set of nodes is partitioned

into storage and processing nodes. Recall that n is the

number of tasks, p is the number of channels in the storage

nodes, and q is the number of channels in the processing

nodes. We have shown that the time complexity bound can

be decreased to O(n log q), but then we can only guarantee

solutions that are within six times the optimal one. We also

showed how to generalize our algorithm for the case when

there are output files for each task as well as for the case

when there are multiple input data files and output data

files for each task.

Another interesting problem is to transform our

algorithms to distributed ones. The portion that is

transformable to a distributed on-line algorithm is the

solution to the openshop problem by using the algorithm

developed by Anderson and Miller [20]at the expense of

generating solutions farther from optimal. However one

needs to solve on-line the other scheduling problems. List

scheduling is an on-line algorithm, but it is not a distributed

one. Transforming it to a distributed one as well as

transforming our algorithm for the 2-component vector

scheduling problem, while maintaining the same

approximation ratios and at the same time decreasing

significantly their time complexity bounds are challenging

open problems.

Another interesting variation of our problem is when

nodes may be used for storage and processing, as well as

when the communication times depend on the source and

destination nodes and the processing speeds of the

processors depends on the task being processed. These are

more realistic variations of our problem; however, it is not

clear whether or not there exist efficient constant ratio

approximation algorithms for these problems.

A conclusion section must be included and should indicate

clearly the advantages, limitations, and possible

applications of the paper. Although a conclusion may

review the main points of the paper, do not replicate the

abstract as the conclusion. A conclusion might elaborate on

the importance of the work or suggest applications and

extensions.

REFERENCES

[1] K. Ranganathan and I. Foster, "Computation and Data

Scheduling in Distributed Data Intensive Applications,"

in Proc. 11th IEEE Symposium on High Performance

Distributed Computing (HPDC 02), July 2002.

[2] O. Beaumont, A. Legrand and Y. Robert, "Optimal

Algorithms for Scheduling Divisible Workloads on

Heterogeneous Systems," in Proc. 17 International

Parallel and Distributed Processing Symp, (IPDPS

2003), 2003.

[3] P. Lampsas, T. Loukopoulos, F. Dimopoulos and M.

Athanasiou, "Scheduling Independent Task Scheduling

in Heterogeneous Environments under Communication

Constraints," in Proceedings of the 7th International

Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT 2006), 2006.

[4] T. Loukopoulos, P. Lampsas and P. Sigalas, "Improved

Genetic Algorithms and List Scheduling Techniques for

Independent Task Scheduling in Distributed Systems,"

in Proceeding of the 8th International Conference on

Parallel and Distributed Computing, Applications and

Technologies (PDCAT 2007), 2007.

[5] H. Casanova, A. Legrand, D. Zagorodnov and F.

Berman, "Heuristics for Scheduling Parameter Sweep

Applications in Grid Environments," in Heterogeneous

Computing Workshop, 2000.

[6] K. Kaya, B. Ucar and C. Aykanant, "Heuristics for

Scheduling File-Sahring Tasks on Heterogeneous

Systems With Distributed Repositories," Journal of

Parallel and Distributed Computing, vol. 67, pp. 271 -

285, 2007.

[7] N. Nobrega, L. Assis and F. Brasileiro, "Scheduling

CPU-Intensive Grid Applications Using Partial

Information," 2008.

[8] F. A. B. da Silva and H. Senger, "Improving Scalability

of Bag-of-Tasks Applications Running on Master-Slave

Plataforms," Journal of Parallel Computing, vol. 35, no.

2, 2009.

[9] R. Graham, "Bounds for Certain Multiprocessing

Anomalies," Bell System Tech. J., vol. 45, pp. 1563-

Int. J. Advanced Networking and Applications

Volume: 03, Issue: 04, Pages:1215-1228 (2012)

1228

1581, 1966.

[10] R. Graham, "Bounds on Multiprocessing Timing

Anomalies," SIAM Journal of Applied Math., vol. 17,

no. 2, pp. 416-429, 1969.

[11] J. Y.-T. Leung, Handbook of Scheduling: Algorithms,

Models, and Performance Analysis, Chapman &

Hall/CRC, 2004.

[12] T. F. Gonzalez, Handbook of Approximation

Algorithms and Metaheuristics, Chapman & Hall/CRC,

2007.

[13] T. Gonzalez and S. Sahni, "Open Shop Scheduling to

Minimize Finish Time," Journal of the ACM, vol. 23,

no. 4, pp. 665 - 679, 1976.

[14] D. B. Shmoys, C. Stein and J. Wein, "Improved

Approximation Algorithms for Shop Scheduling

Problems," SIAM J. Comput., vol. 23, pp. 617 - 632,

1994.

[15] C. Chekuri and S. Khanna, "On Multidimensional

Packing Problems," SIAM Journal on Computing, vol.

31, no. 1, pp. 35-41, 2004.

[16] H. Kellerer and V. Kotov, "An Approximation

Algorithm with Absolute Worst-case Performance Ratio

2 for Two-dimensional Vector Packing," Operations

Research Letters, vol. 31, no. 1, pp. 35-41, 2003.

[17] R. Anderson and G. Miller, "Optical Communications

for Pointer Based Algorithms," TRCS, CRI 88-14, USC,

1988.

[18] R. Cole and J. Hopcroft, "On Edge Coloring Bipartite

Graphs," SIAM J. on Computing, vol. 11, no. 3, pp. 540-

546, 1982.

[19] H. Gabow and O. Kariv, "Algorithms for Edge Coloring

Bipartite Graphs and Multigraphs," SIAM J. Computing,

vol. 11, pp. 117-129, 1982.

[20] R. Cole, K. Ost and S. Schirra, "Edge-Coloring Bipartite

Multigraphs in O(E log D)," Combinatorica, vol. 21, pp.

5-12, 2001.

Appendix I
In Fig. 3 you will find the schedule S3 constructed for the

algorithm given in Ref. [13] for the instance P3 of the

openshop problem given in Table 7. Fig. 5 you will find the

same schedule, but with respect to the out-channels. I.e.,

the horizontal axis represents time and the rows correspond

to the out-channels. Each block assignment is labeled with

a task index and the in-channel used to receive the data

communication.

Biography

Professor Gonzalez was born in Monterrey, Mexico. He

received a BS degree in computer science from the ITESM

(1972). He received his Ph.D. degree from the University

of Minnesota (1975). He has been member of the faculty at

OU, Penn State, and UT Dallas, and has spent sabbatical

leave at the ITESM Monterrey (Mexico) and U. Utrecht

(the Netherlands). Since 1984 he has been professor of

computer science at UCSB. His main area of research

activity is the design and analysis of efficient exact and

approximation algorithms, deterministic scheduling, CAD,

graph algorithms, computational geometry, parallel

computing, and multicasting.

Figure 5: Out-Channel Communication Schedule Constructed for Problem P3for our Example.

