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----------------------------------------------------------------ABSTRACT------------------------------------------------------------------ 

We study the problem of scheduling tasks in a distributed system where the data (and code) for a program may 

reside on a processor different from the one where it will be executed. The scheduling of the tasks is more 

complex than classical ones as one must not only take into consideration the processing times but also 

communication times. We present an off-line polynomial time approximation algorithm for the case when the 

processors can be partitioned into storage (client) and processing (server) nodes. Our algorithm is the first 

constant ratio approximation algorithm for this problem. Then we discuss generalizations of our problem, 

including an on-line distributed version, as well as versions that allow tasks to access multiple input files and 

generate multiple output files that reside in one or more nodes. 
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1. INTRODUCTION 

Scheduling problems arising from several research areas 

have been studied for more than five decades. The initial 

work was in operations research, computer science, and 

applied mathematics.  More recently scheduling has been 

studied in the context of parallel, cluster, and grid 

computing. Our model falls under the broad umbrella of 

scheduling data-intensive distributed applications as well 

as ``cloud computing'' scheduling, i.e., where storage and 

processing of a task will be somewhere in the cloud. In 

this paper we discuss the problem of scheduling in 

distributed systems where the data (and code) for a 

program might not reside on the node where the task is to 

be processed. This scheduling problem is more complex 

than traditional ones. The complexity arises because in 

addition to balancing the processing workload, we also 

need to balance the time required to transmit the data (and 

code) needed by the programs. Algorithms for problems 

related to our problem appear in Refs. [1, 2, 3, 4, 5, 6, 7, 

8]. This papers present heuristic and metaheuristics to 

generate sub-optimal solutions for different variations of 

our problem and present the results of an experimental 

evaluation of the performance of their algorithms. None of 

these algorithms have been shown to always generate 

schedules with a makespan that to be within a fixed 

percentage of the optimal one. On the other hand, our 

analysis is theoretical. We show that our algorithm is the 

first constant ratio approximation algorithm for our 

scheduling problem, i.e. the schedules generated have a 

makespan that is guaranteed to be withina given fixed 

percentage, independent of any problem parameters, of the 

optimal one.  

 

The system (``cloud'') consists of a set ofM nodes denoted 

by 1, f2, …, m. Each node j consists of mj identical 

processing elements (processors). Forexample,a node may 

be a parallel processor system, a cluster of computers,or a 

single computer with one or more cores.There are n 

independent tasks denoted by 1, 2, …, n to be processed. 

Processing task i by any processing element (processor) 

takes ti units of time,since all the processing elements are 

assumed to have the same processing capability.  

 

The data (and code) for each task i is initially located at 

node si and, depending on the number of processing 

elements at the nodes and the total demand on the system, 

the task may or may not end up being scheduled for 

execution by a processor at node si. If task i is processed at 

another node, then the data
1
 required by the task needs to 

be transmitted from node si to the node where task i is to 

be processed.  The transmission time is di time units. All 

of the task's data must be available at the processing node 

before any of its processors can begin executing the task. 

The data communication between nodes is performed 

through a channel in the communication network N. Node 

j has cjbi-directional channels. The bi-directional 

channelsare labeledin-channels and out-channels with 

respect to node i when the channels are used to bringin 

data or send out data, respectively.  We assume that  

any one-to-one interconnection between nodes through the 

channels is supported by the communication network, and 

the routing to achieve the data interchanges can be 

computed in polynomial time. These assumptions are not 

too restrictive as a large number of interconnection 

networks satisfy these properties. We do not include this 

 
1 Hereafter we use ``data'' needed by a task to refer to the ``data and 

code'' needed to process the task. 
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time in our analysis as it depends on the communication 

network. Once we determine that task i is to be processed 

by a processor at node j, we need to specify the out-

channel to be used at node si, the in-channel to be used at 

node j, and the time interval when the data for task i is 

transmitted from node si to node j. Of course, the 

restriction is that the data from two or more tasks cannot 

be transferred using the same in-channel or the same out-

channel at the same time. The objective function is to 

construct a minimum makespan computation schedule for 

the tasks that depends on the communication schedule 

constructed for the data communications. Fig. 1 depicts a 

simple problem instance defined over five nodes. This 

problem instance is fully specified in our example. 

 

In this paper we consider the bipartite version of the 

problem when the set of nodes is partitioned into two sets 

called: Storage (Client) and Processing (Server) nodes. 

The data needed by the tasks is stored at the storage nodes 

and the processing of the tasks is to be performed at the 

processing nodes. To simplify the notation, assume that 

the first w nodes (1, 2, …, w) are the storage nodes, and 

the remaining ones (w+1, w+2,…, m) are the processing 

nodes. It is assumed that the number of channels, cj, for 

each of the processor nodes is equal to the number of 

processors at node nj. A 1-1 correspondence between 

processors and channels at each processing node is 

established
2
. For the storage nodes, 

ci> 1. 

 

Example 

There are five nodes (m=5) and w=3. Nodes 1 – 3 store 

data for the tasks and nodes 4 and 5 process the tasks. The 

number of processors (mi) and number of channels (ci) at 

each node are given in Table 1. There are fifteen tasks 

(n=15). The processing time (ti), communication time (di) 

and the index of the node (si) where the data resides for 

each task is given in Table 2. 

 

Given a set of independent tasks, their location and data 

requirements, our problem is to find the node, processor, 

and time at which each task  is to be executed, as well as 

the (in- and out-) channels and time where the data (file) 

required by each task is to be transmitted. Our algorithms 

attempt to balance as much as possible the processing and 

communication times.  We establish bounds between the 

balance in our schedules and the best possible 

communication and processing balance. 

 

In this section, we discuss some well-known scheduling 

problems and their algorithms that our proposed algorithm 

invokes as sub-procedures (Sections 2.1 and 2.2), and we 

define and discuss the d-component vector scheduling 

problem as well as a new approximation algorithm, for 

d=2, that generates provably good solutions (Section 2.3). 

 
2 This assumption simplifies the communication model. The number 

of channels may be different than the number of processors. However, 

such systems are equivalent to our model by using virtual channels. The 
resulting problem is a generalization of our problem and for brevity it 

will not be discussed further. 

This approximation algorithm is a central component of 

the scheduling algorithm proposed in this paper. Our 

scheduling algorithm is discussed in Section 3. In Section 

4we discuss generalized versions of our problem. These 

versions allow the input data files to reside in multiple 

storage nodes and the tasks generate output files to be 

stored in one or more storage nodes. 

 

Table 1: Number of Processors (mi) and Number of 

Channels (ci) for each Node in our Example. 

 

i 1 2 3 4 5 

mi 0 0 0 4 2 

ci 1 3 2 4 2 

 

Table 2: Processing and Communication Times, and Index 

of the Node where the Data for each Task Resides for all 

the Tasks in our Example. 

 

i 1 2 3 4 5 6 7 8 

ti 70 60 61 70 31 40 30 40 

di 20 51 25 25 60 70 30 100 

si 1 1 2 2 2 2 2 2 

i 9 10 11 12 13 14 15 

ti 50 55 5 5 60 18 5 

di 14 14 45 60 5 5 76 

si 2 2 3 3 3 3 3 

 

 
Figure 1: Our Example. 

 

 

Our results are for the centralized (offline) scheduling 

problem, where the scheduling is performed by a central 

processor that knows all the global information.In Section 

5 we discuss the portions of our scheduling algorithm that 

can be performed significantly faster in a distributed 

environment, i.e., when processors only know local 

information. 

 



Int. J. Advanced Networking and Applications   

Volume: 03, Issue: 04, Pages:1215-1228  (2012) 

1217 

2. PRELIMINARIES 

To In Sections 2.1 and 2.2 we briefly survey well known 

scheduling problem as well as exact and approximation 

algorithms for their solution. In Section 2.3 we discuss a 

new approximation algorithm for the 2-component vector 

scheduling problem. These algorithms are used by our new 

approximation algorithm presented in this paper (Section 

3). 

 

2.1. Scheduling Identical Machines. 

 

The problem of scheduling independent jobs on identical 

machines is well known and has been studied for the past 

four decades. The input to the problem is a set of n 

independent jobs to be scheduled for processing by m 

identical machines. Each job has execution time 

requirement given by the positive integer pi. A schedule is 

an assignment of jobs to machines in such a way that at 

any given time every machine is scheduled to process at 

most one job and each job is assigned to at most one 

machine. A schedule is non-preemptive if every job is 

scheduled for processing during one continuous time 

interval. Otherwise the schedule is calledpreemptive. The 

makespan (finish time) for schedule S, denoted by f(S), is 

the latest time a machine processes a task. The minimum 

makespan identical machine scheduling problem is to 

construct a schedule with minimum finish time 

(makespan). Constructing a minimum makespan 

preemptive schedule for any instance of this problem takes 

linear time with respect to the number of jobs and 

machines. However, the corresponding non-preemptive 

scheduling problem is NP-hard. There are many well-

known algorithms to generate near-optimal non-

preemptive schedules, e.g., list [9] and LPT [10] 

scheduling. The former procedure generates schedules in 

O(n log m) time with a makespan that is within 2 times the 

optimal makespan, and the latter algorithm takes O(n log 

n) time and generates schedules with makespan at most 

4/3 - 1/(3m) times the optimal makespan. Additional 

information about approximation algorithms for 

scheduling identical processors can be found in Refs. [11, 

12].  

 

II.2. Openshop Scheduling. 

 

An openshop consists of m ≥1 machines, and n ≥ 1 jobs. 

Each job consists of m tasks. The j
th

 task of job i must be 

processed by the j
th

 machine for pi,j>0 time units. We use r 

to denote the number of tasks with non-zero processing 

requirements and we use the triplet (P,n,m)to denote a 

problem instance, where P represents the set of processing 

times {pi,j}. A schedule is an assignment of each task to its 

corresponding machine for a total ofpi,j time units in such a 

way that at each time unit at most one task from each job 

is assigned to any of the machines, and each machine is 

assigned at most one task at a time. A non-preemptive 

schedule is one where every task must be scheduled for 

processing without interruption. In a preemptive schedule, 

the processing of a task may be interrupted and resumed at 

a later time. The  makespan (finish time) for schedule S, 

denoted by f(S), is the latest point in time a task is 

scheduled to be processed by a machine. The minimum 

makespan openshop scheduling problem is to construct a 

schedule with minimum finish time (makespan).  

 

Given an instance (P,n,m) of the openshop problem, let yj 

be the total time that machine j must be busy processing 

tasks, and xi be the total time that job i needs to be 

processed. Let t = max {xi,yj}.Gonzalez and Sahni [13] 

have shown that there is always a preemptive schedule 

with makespan t and one such schedule can be constructed 

in O(r(min{r,m
2
}+m log n)) time

3
. The makespan is best 

possible. Furthermore, when all the pi,js are integers, there 

is a schedule where preemptions occur only at integer 

points, and one such schedule is generated by the 

algorithm in Ref. [13]. For non-preemptive scheduling, the 

problem is NP-hard even when there are only three 

machines. There are several approximation algorithms for 

both versions of the problem.The fastest and simplest one 

is an O(r log m) time list scheduling algorithm that 

generates schedules with makespan at most two times the 

optimal makespan. This algorithm was initially proposed 

by Racsmany and subsequently analyzed by Shmoys, 

Stein and Wein [17]. Additional results for the openshop 

problem are discussed in Ref. [11]. 

 

II.3. Vector Scheduling on Identical Machines. 

In this paper we model a portion of our problem as a 2-

component vector scheduling problem. The vector 

scheduling problem for identical machines is a well-

known generalization of the problem discussed in Section 

2.1. The difference is that the processing requirement for 

each job is given by a d-component vector, (pi,1, pi,2, …, 

pi,d). A schedule for the m machines is just an assignment 

of each job to a machine. For this problem we are just 

interested in non-preemptive schedules. The makespan 

(finish time) of a schedule S, denoted by f(S), is the 

maximum over each machine j and component k of the 

sum of the processing times of the k
th

 component of the 

jobs assigned to machine j in schedule S. In other words, 

minimize maxj=1,…,mmaxk=1,…,d∑job iassigned to machine j  pi,k. 

 

There is a simple O(n log m) time algorithm that generates 

schedules with makespan at most d+1 times the optimal 

makespan. As it is pointed out in Ref. [18], the origin of 

this algorithm is unknown. This algorithm is a (single 

component) list scheduling algorithm using as the 

processing times for each job the sum of the d processing 

times for the d components of the job. Chekuri and 

Khanna [18] developed an algorithm that generates 

schedules with makespan at most O(ln
2
 d) times the 

optimal. They also present another approximation 

algorithm with a smaller approximation ratio, O(ln d), for 

the case when d is bounded by a constant. These two 

approximation algorithms take polynomial time, but the 

 
3 The preemptive openshop problem can be modeled as the problem of 

coloring the edges in a multigraph. There are several algorithms to color 

such graphs [14, 15, 16]. However the fastest of these algorithms is 
currently slower than the one in [13].  That is why we use the algorithm 

in Ref. [13] 
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constants associated with the time complexity bounds are 

large. The constants associated with the big-oh notation 

for the approximation ratio is not small. Chekuri and 

Khanna [18] developed a polynomial time approximation 

scheme (PTAS) for the case when d is bounded above by a 

constant.  In other words, they showed that the vector 

scheduling problem can be approximated to within any 

constant ε in polynomial time. However this algorithm is 

very slow in practice. In Subsection 2.3 we present a linear 

time algorithm that generates schedules with makespan at 

most 2times the optimal makespan for d=2. This algorithm 

is different from the one reported by Kellerer and Kotov 

[19] for the vector packing problem for d=2, which has 

some similarities to our problem and it is a generalization 

of the bin packing problem.  It does not seem possible to 

use this algorithmto establish the approximation ratio of 2 

for the 2-component vector scheduling problem, or vice-

versa. Also, our algorithm takes linear time, whereas the 

one in [19] takes O(n log n) time. The constant associated 

with the time complexity bound is very small for both 

algorithms.  

 

2.3.1. APPROXIMATING THE TWO COMPONENT 

VECTOR SCHEDULING PROBLEM. 

In this section we present an algorithm to construct a  

 schedule with makespan at most twice of the optimal one 

for the 2-component vector scheduling problem. The 2-

component vector scheduling problem consists of n 

independent jobs and m identical machines. Job i has the 

2-component pair (xi,yi) specifying its 2-component 

processing times. Define 

 

X= max{Σ xi /m, max{xi}}, 

Y = max{Σyi /m, max{yi}}, 

L = max{X, Y}. 

 

 Clearly, the optimal makespan is at least L. 

 

We will apply our algorithm to the problem instance given 

in our example as follows: the number of processors m is 

6, the number of jobs n is 15, the xis correspond to the tis 

and the yis correspond to the dis (i.e., the tasks in our 

example correspond to the jobs in the 2-component 

scheduling problem). Clearly, X=Y=L=100. 

 

During the execution of our algorithm every machine is 

assigned a set of jobs. We use Gj to represent the set of 

jobs assigned to processor j. We define Xj (Yj) as the sum 

of the x-component (y component) of the jobs assigned to 

processor j (jobs in set Gj). Initially each processor j has 

zero tasks assigned, so Xj = Yj = 0. A processor is said to 

be of type A (available), Fx (filled in x), Fy (filled in y) and 

Fxy (filled in x and y) depending on the conditions listed 

below: A processor is said to be of type 

A    if  0 ≤Xj≤L   & 0 ≤Yj≤ L 

Fx  if  L <Xj≤ 2L   & 0 ≤Yj≤ L; 

Type  

Fy  if  0 <Xj≤ L    & L <Yj≤ 2L; 

Fxy if   L <Xj≤ 2L   &  L <Yj≤ 2L. 

Our algorithm assigns all jobs in such a way that all 

processors will be of type A, Fx, Fy and Fxy. Therefore our 

schedule has makespan at most 2L. To maintain the 

invariant our algorithm will rearrange the schedule at each 

iteration so that there is at least one type A processor 

where the i
th

 jobs will be assigned. 

 

We say that a job i fits in processor j if the x-component of 

job i plus Xj is at most 2L, and the y-component of job i 

plus Yj is at most 2L. Processors j and k are said to be x-

compatible and y-compatible if Xj+ Xk≤ 2L and Yj + Yk≤ 

2L, respectively. Processors j and k are said to be xy-

compatible if they are both x-compatible and y-

compatible. Processors j and k are said to beincompatible 

if they are not x-compatible or y-compatible. Initially 

every processor is said to be unmatched. During the 

execution of our algorithm we will identify pairs of 

processors and match them together.Each processor is to 

be matched to at most one other processor. Every pair of 

matched processors will be incompatible. Therefore there 

can be at most m-2 matched processors. Our algorithm is 

defined below: 

 

Procedure Approx((x1, Y1),( x2, y2), …, (xn, yn), n, m); 

Initially processor j has zero tasks 1 ≤ j ≤ m(Gi=Ø) 

 and therefore all processorsare of type A; 

fori= 1 tondo 

while there are no type A processors do 

Let j be an unmatched type Fx processor; 

Let k be an unmatched type Fy processor; 

// Later on we show processors j and k alwaysexist 

case 
:Processors j and k are incompatible: 

Match processors j and k; 

break; 

:Processors j and k are xy-compatible: 

//Delete all jobs from processor k and assign 

 them to processor j; 

Gj Gj Gk; 

    Gk Ø; 

break; 
   :Processors j and k are x-compatible: 

while a job l assigned to processor k 

 fits in processor jdo 

// Delete job l assigned to processork and 

// assign it to processor j; 

     Gj Gj {l}; 

     Gk Gk / {l}; 

endwhile 

break; 

:Processors j and k are y-compatible: 

while a job l assigned to processor j fitsin 

processor kdo 

Delete job l assigned to processor 

j and assign it to processor k; 

Gk Gk {l}; 

Gj Gj / {l}; 

endwhile 
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   break; 
endcase 

 endwhile 
 Let j be a type A processor; 

// Assign job i to processor j; 

 Gj Gj { i }; 

endfor 
 End of Procedure Approx 
 

Let us now apply algorithm Approxto the instance of the 2-

component vector scheduling problem constructed from 

the problem instance given in our example. Initially all the 

five processors are type A. The first two iterations tasks 1 

and 2 are assigned to processor 1and the processor 

becomes type Fx. The next two iterations tasks 3 and 4 are 

assigned to processor 2and the processor becomes type Fx. 

The next 8 iterations assign tasks to each of the remaining 

processors and all the processors become type Fx or Fy.  

The status of all the processors after the first 12 iterations 

is given in Table 3. 

 

Table 3: Assignment of the First Twelve Tasks in our 

Example. 

 

l 1 2 3 4 5 6 

G_l {1,2} {3,4} {5,6} {7,8} {9,10} {11,12} 

X_l 130 131 71 70 105 10 

Y_L 71 50 130 130 28 105 

Type Fx Fx Fy Fy Fx Fy 

 

When the algorithm considers task 13, none of the 

processors are type A. So the algorithm selects a processor 

typeFx and one type Fy. Let’s say the algorithm sets j=1 

and k=3. Processors j and k are incompatible as 

Xj+Xk=130+71>200=2L and Yj+Yk=71+130>200=2L.  

So the algorithm matches these processors to each other 

(see Table 4) and then selects two unmatched processors 

(one type Fx and the other type Fy). Lets say the algorithm 

sets j=2 and k=4. This pair is y-compatible. The algorithm 

transfers task 3 from processor j to k and processor j 

becomes type A. Task 13 is then assigned to processor j.  

As a result of this processor j remains type Fx and 

processor k becomes type Fxy (see Table 4).  

 

When the algorithm considers task 14, none of the 

processors are type A so the algorithm selects a processor 

type Fx and one type Fy. Let’s say the algorithm sets j=5 

and k=6. This pair is xy-compatible. The algorithm 

transfers tasks 11 and 12 from processor k to j. Processors 

j becomes type Fxy and processor k becomes type A. Then 

task 14 is assigned to processor 6 and processor 6 remains 

type A. In the next iteration task 15 is assigned to 

processor 6 (which is type A) and the processor remains 

type A. Table 4 shows the final assignment of the tasks to 

the processors. 

 

Lemma 1:Algorithm Approx generates a schedule with 

finish time at most 2Lfor any 2-component vector 

scheduling problem instance, in O(n+m) time. 

 

Proof: First we establish correctness and prove the 

approximation bound. Then we prove the time complexity 

bound. If at each iteration a jobs is assigned to a processor 

type A, then at the end of the algorithm every processor 

will be of type A, Fx, Fy orFxy, and the schedule will have 

makespan at most 2L. The proof is by contradiction. 

Suppose that there are problem instances for which the 

above algorithm fails to assign a job to a processor. Let I 

be any of these instances. As our algorithm processes 

instance I it will eventually encounter a job i that cannot 

be assigned to any of the processors. Consider now the 

first time during the i
th

 iteration when the condition of the 

while statement was true, i.e., none of the processors were 

type A. Let r be the number of processors that are type Fxy 

or matched. 

 

Table 4: Final assignment of all the tasks in our example. 

 

l 1 2 3 4 5 6 

Gl {1,2} {3,4} {5,6} 
{3,7, 

8} 

{9,10, 

11,12} 
{14,15} 

Xl 130 130 71 131 115 23 

Yl 71 30 130 155 133 81 

type M (3) Fx M (1) Fxy Fxy A 

 

 

We claim that r is less than, the number of processors, m, 

and that there must be at least one unmatched type Fx 

processor and one unmatched type Fy processor.  The 

proof of the claim follows from the fact that if there were 

zero type A processors and zero type Fx processors, then 

the sum of the y-component of all of the jobs previously 

assigned to the processors would exceed mL, which 

contradicts the definition of L. Similar arguments can be 

used to prove that there must be at least one processor type 

A and one processor type Fy. 

 

So, there is at least one processor j type Fx and one 

processor k type Fy. There are several cases depending on 

the compatibility of processors j andk. 

 

Case 1: Processor j and k are incompatible. 

In this case processors j and k will be matched to each 

other and the value of r increases by two. By using 

arguments similar to the ones above one can show that the 

new value for r is less than m and there is an unmatched 

processor j type Fx and another unmatched processor k 

type Fy. There are no type A processors and the condition 

of the while Statement must hold at the next iteration. 

 

Case 2: Processor j and k are xy-compatible. 

In this case the algorithm moves all the jobs assigned to 

processor k to processor j.  The assignment of processor j 

is feasible as processor j and k were xy-compatible.  Also, 

processor k becomes type A and task i is assigned to it. But 

this contradicts the previous assumption that task i could 

not be assigned. 
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Case 3: Processors j and k are x-compatible. 

Since processor j is type Fxwe know that L <Xj≤ 2L and 0 

≤ Yj≤ L, and since processor k is type F_y we know that 0 

< Xk≤ L and L ≤ Yk≤ 2L. Since processors j and k are x-

compatible and all jobs have their y-component smaller 

than L, we know that we can reassign at least one job from 

processor k to processor j.  The algorithm reassigns a 

subset of jobs assigned to processor k to processor j. When 

no more jobs can be reassigned from processor k to 

processor j, we know that processor j is type Fxy, because 

processors j and k are x-compatible, processor j is type Fx, 

and processors j and k were not y-compatible to begin 

with. Processor k will either become type A or remain type 

Fy, and r will be increased by 1.  In the former case task i 

is assigned to processor k. But this contradicts the previous 

assumption that task i could not be assigned. In the latter 

case by using arguments similar to the ones above one can 

show that the new value for r is less than m and there is an 

unmatched processor j type Fx and another unmatched 

processor k type Fy. There are no type A processors and 

the condition of the while statement holds at the next 

iteration. 

 

Case 4: Processors j and k are y-compatible. 

The proof for this case is omitted as it is similar to the one 

for Case 3. 

 

In the above four cases either we contradict our earlier 

assumption or the value of r increases by at least one and 

the condition of the while loop will hold. After no more 

than m iterations (of the while loop) we either reach a 

contradiction or r becomes larger than m.  But as we stated 

before, this leads to a contradiction.  

 

This completes the proof of correctness and the 

approximation bound. To complete the proof of the 

lemma, we need to prove the time complexity bound. 

 

An implementation detail we have not discussed is that we 

keep four (doubly-linked) lists of processors, one for each 

type of processors, and an array (indexed by a processor 

number) pointing to the elements in the doubly-linked list. 

We also keep the number of processors of each type. 

Therefore, finding a processor of certain type, know if 

there are zero processors of certain type, or 

deleting/adding a processor of a certain type, can be easily 

implemented to take constant time. Every time we iterate 

through the while loop we will increase, r, the number of 

matched processors plus the number of type Fxy processors 

by at least one. In the proof of the first part of this lemma 

we show that r will always be smaller than r-1. Since r is 

never decreased, it follows that the while loop is executed 

at most r-1times. The body of the while loop can be easily 

implemented to take constant time. The for-statement is 

executed n times and each time it takes constant time, 

excluding the time taken by the while loop which is being 

counted separately.  Therefore the time complexity is 

O(n+m).  This concludes the proof of the lemma. 

 

There are problem instances for which our algorithm, or 

for that matter any algorithm, does not generate solutions 

with makespan significantly smaller than 2L. For some of 

those problem instances the optimal makespan is close to 

2L. Therefore, there may exist simple algorithms to 

construct schedules with makespan significantly better 

than 2*OPT, where OPT is the optimal makespan.  As we 

shall see, even if such algorithms exist they will have 

minimal impact in our analysis. 

3. APPROXIMATING THE BIPARTITE PROBLEM. 

Let us outline our four-phase approximation 

algorithm.Our approach begins by assigning tasks to the 

processor where they are to be processed in such a way 

that the computing and communication time are balanced 

(suboptimally), and then the actual schedules are 

constructed. The schedules generated by our algorithm 

consist of two parts: a communication schedule that 

specifies when all the communications take place, and a 

computation schedule that specifies when all the 

processing of the tasks takes place. We say that we are 

approximating the problem by ``restriction'' as our initial 

approach performs first all the communications and then, 

at a separate time, all the computation. But, since the tasks 

will be processed in the same order in which their data 

arrives at the in-channel associated with the processor, 

then it may be possible to overlap at least portions of these 

schedules. So our approximation technique is actually 

``restriction'' followed by a posteriori ``overlapping''. Our 

general approach is as follows. 

 

 Determine the processor where each task i is to be 

executed andidentify the corresponding in-channel to 

be used to receive the data for task i. 

 Determine the out-channel to be used to send the data 

for task i. 

 Construct the communication schedule Comm, i.e., 

determine the actual time when the data required by 

the tasks is to be sent from the storage nodes via the 

out-channel to the receiving processing nodes via the 

in-channel. 

 Construct the computation schedule Comp, i.e., 

determine the actual time when each task is to be 

processed. 

 

These four steps are implemented by solving different 

scheduling problems. The first step is implemented by 

solving a 2-component vector scheduling problem; step 

two by scheduling a set of independent jobs on identical 

machines; the third one by solving an openshop 

scheduling problem instance; and the last one, is the 

simplest one, as the ordering is determined by the ordering 

of the data arriving to the processor. In what follows we 

explain in detail all the steps in our procedure and then we 

formally specify our algorithm. As we define the steps of 

our algorithm we will be applying it to the problem 

instance given in our example. 
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Step 1: Determine the processor and in-channel to be used 

to process and receive the data for each task. This is 

accomplished by constructing a schedule S1 (by the 

algorithm given in Section 2.3.1) for the 2-component 

vector scheduling problem P1 defined below. Let p be the 

total number of processors (as well as the number of in-

channels) at the processing nodes, i.e., p =Σj=w+1,…, mnj. 

The first nw+1 processors are located at node w+1, the next 

nw+2 processors at node w+2, and so on. 

 

We construct the instance P1 of the 2-component vector 

scheduling problem as follows. For each task i we define 

job i with Ti as its x-component and di as its y-component. 

Define 

T= min {Σ ti/ p, max {ti} }, 

D = min {Σdi / p}, max{di} }, and 

L = max {T, D }. 

 

Clearly the x-component and y-component of each one of 

the tasks is a value between 0 and L.  The sum of the x-

component and y-component of all the tasks is at most pL, 

respectively. We construct a schedule S1 for the instance 

P1 by using the linear time algorithm given in Section 

2.3.1. All the tasks assigned to the same machine in 

schedule S1 are assigned to the same processor for their 

execution and their data is to be received by the in-channel 

corresponding to the processor. 

 

As we established in Section 2.3.1 all the tasks assigned to 

the same machine in schedule S1are such that the sum of 

their x-component is at most 2L and the sum of their y-

component is at most 2L. Therefore, every processor will 

be running tasks for at most 2L time units, and every in-

channel will be receiving data for at most 2L units of time 

(later on we construct the actual schedules specifying 

when these operations will take place). 

 

Name the four processors at node 4 as processors 1, 2, 3, 

and 4; and the two processors at node 5 as processors 5 

and 6. The corresponding in-channels are referred to as I1, 

I2, I3, I4, I5, and I6. In Section 2.3.1 we applied our 2-

component vector scheduling algorithm to the instance 

given in our example.  This is instance P1 defined above 

and the resulting schedule is S1. The tasks assigned to the 

six processors (represented by the sets Gj) are given in 

Table 5 (constructed from Table 4).  We use Tj (Dj) as the 

sum of the processing (communication) time requirements 

of the tasks assigned to processor j. 

 

Table 5:Task Assignments to Processors (and 

corresponding In-channels) for Schedule S1 for our 

Example. 

j I1 I2 I3 I4 I5 I6 

Gj {1,2} {4,13} {5,6} 
{3,7, 

8} 

{9,10, 

11,1} 
{14,15} 

Tj 130 130 71 131 115 23 

Dj 71 30 130 155 133 81 

 

Step 2: Now let’s determine the out-channel to be used to 

send the data for each task to the processor where the task 

is to be executed. Let q be the total number of out-

channels in the storage nodes, q = Σj=1, …, wcj (remember cj 

is the number of out-channels in node j). For every storage 

node k, our algorithm partitions the tasks' data files stored 

in it into cj groups. The data for each task assigned to each 

group is to be sent via a different out-channel. The 

partitioning should be such that the sum of the 

communication times of all the data for the tasks assigned 

to the out-channels is balanced as much as possible. It is 

well known that this partitioning problem is NP-hard 

under the assumption that all the data needed by a task has 

to be transmitted using the same channel
4
. For this version 

of the problem, one can generate a near-optimal solution 

by modeling the partitioning problem as an instance of the 

problem of scheduling independent jobs on identical 

machines (which is the same as the single-component 

vector scheduling problem). Each task corresponds to a 

job and the execution time of each job is the time required 

to transmit the data for the corresponding task. We can use 

any of the scheduling algorithms discussed in the Section 

2.1 to generate a near-optimal schedule which is then used 

to obtain near-optimal balanced partitions. If we use list 

scheduling [9] then one can construct schedules with 

makespan at most 2 times the makespan of an optimal 

schedule in O(n log m) time. On the other hand, LPT 

generates schedules with makespan (finish time) at most 

4/3 - 1/(3m) times the makespan of an optimal schedule 

[10]in O(n log n) time.  We use P2 to denote the collection 

of scheduling problems just defined and S2 to denote the 

set of schedules generated. 

 

For our example, the out-channel at node 1is namedO1, the 

three out-channels at node 2 as O2, O3, and O4, and the two 

of node 3 as O5 and O6. Using the task indices as the list 

(for the list scheduling algorithm) one can easily construct 

list schedules for each of the three storage nodes when 

considering the di values as the processing times for the 

jobs.  Table 6 shows a possible list schedule (assignment 

of tasks to the out-channels) at each node.  Note that one 

may generate many different list schedules. Our results 

hold, no matter which list schedule is generated. The total 

communication time of the tasks is shown in the next 

column. 

Table6: Assignment of Tasks to Out-channels for our 

Example. 

Node 
Out-

channel 

Tasks 

Assigned 

Total 

Comm. 

Time 

1 O1 {1,2} 71 

2 O2 {3,6} 95 

2 O3 {4,7,9} 155 

3 O4 {5,9,10} 88 

3 
O5 

{11,13, 

14,15} 
131 

3 O6 {12} 60 

 
4 However, if one is allowed to transmit the data using two or more 

channels then the problem can be solved in polynomial time. The 
resulting schedule would be more complex, but the approximation bound 

for the whole algorithm would be the same. 
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To summarize the first two steps, we have determined for 

every task i the out-channel to be used to send the data it 

needs as well as the in-channel to receive it, and the 

corresponding processor to execute the task. We just need 

to determine the actual time when the data for each task is 

to be transmitted and the time at which the tasks are to be 

processed in such a way that there are no communication 

conflicts, i.e., the data for two or more tasks is not being 

sent or received by the same channel at the same time, and 

the processing of a task cannot start before the processor 

has all the task's data. In other words, we need to construct 

the communication schedule Comm and the computation 

schedule Comp. 

 

Step 3:The timing of all the communication events is 

obtained by modeling the problem as an instance of the 

openshop scheduling problem. Before defining the 

openshop instance P3 it is convenient to begin by defining 

the bipartite graph G consisting of the set of vertices S and 

P.  Each vertex in set S represents a storage node and one 

of its communication out-channels.  Similarly, each vertex 

in set P represents a processor in a processing node and its 

corresponding communication in-channel. At this point 

our algorithm knows the out-channel (Step 1) and in-

channel (Step 2) for the transmission of the data for each 

task i. This information is used to define the set of edges in 

the graph (for our example see Fig. 2). There is an edge 

from a vertex i in S to a vertex in j in P if there is at least 

one task using the out-channel i and the in-channel j. Note 

that several tasks may be represented by the same edge. So 

we label each edge by the set of tasks it represents (Fig. 2). 

The weight of the edge is the total communication time 

needed to transmit the data for all the tasks represented by 

the edge. Each node in S represents a job and each node in 

P represents a machine in the instance of the openshop 

problem P3 we construct. We define as pi,j the weight of 

the edge joining vertex i in S to vertex j in P, and zero if 

such edge does not exist. Let xi be the sum of the weight of 

the edges incident to vertex i in S, i.e. Σjpi,j, let yj to be the 

sum of weight of the edges incident to vertex j in P, i.e. 

Σipi,j. We define t as max{xi, yj }. From Ref. [13]we know 

that there is a preemptive communication schedule S3 with 

makespan t for P3 and schedule S3 can be constructed in 

polynomial time
5
. From schedule S3 one can easily 

construct schedule Comm that gives the specific times 

when the data for task i must be transmitted from the 

storage node where it resides to the processing node where 

it is to be processed using the channels that have been 

previously selected. 

 

For our working example, Table 7 shows the execution 

time requirements for the jobs (pi,j) computed from the 

bipartite graph given in Fig. 2 and and the tasks' 

communication times given in Table 2. This is problem 

instance P3. A possible schedule S3 constructed by the 

algorithm given in Ref.[13] for instance P3 defined in 

 
5 Note that this claim has been independently established is many 

papers.  We use Ref. [13] because their algorithm to generate such 
schedules is asymptotically faster than all known algorithm for this 

problem. 

Table 7 is given in Fig. 3. The horizontal axis represents 

time and the rows correspond to the in-channels (or the 

corresponding processors).  Each block assignment is 

labeled with a task index and the out-channel used in the 

communication. Note that the schedule is preemptive, so a 

task index may be assigned to two or more time intervals 

(block assignments).  However, at no point in time an out-

channel is used by two or more tasks, simply because the 

out-channel can only be sending one data set at a time. In 

Appendix I we give the schedule with respect to the out-

channels. I.e., the horizontal axis represents time and the 

rows correspond to the out-channels. Each block 

assignment is labeled with a task index and the in-channels 

used in the communication. 

 

 
Figure 2: Bipartite Graph Constructed for our Example. 

 

Table 7: Openshop Instance P3 for our Example. 

 

Jobs\Machines 1 2 3 4 5 6 Xi 

1 71 - - - - - 71 

2 - - 70 25 - - 95 

3 - 25 - 130 - - 155 

4 - - 60 - 28 - 88 

5 - 5 - - 45 81 131 

6 - - - - 60 - 60 

Yj 71 30 130 155 133 81  

 

Step 4: The computation schedule Comp is constructed in 

this last stage. I.e., we determine the exact times when the 

processing of the tasks will take place.  Since we already 

know which tasks are to be processed by each of the 

processors, the ordering of the tasks may be arbitrary.  

However, to reduce the makespan for the schedule of each 

processor it is better to use the ordering given by the time 

when all the data for the tasks arrives at the corresponding 

in-channel. Each task assigned to processor j will be 

scheduled for execution starting at the latest of { t1, t2}, 

where t1 is the time at which all the tasks in the ordering 

for  
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Figure 3: In-channel Communication Schedule Constructed for problem P3 for our Example. 

 

processor j before task i have completed processing and t2 

is the time at which all the data for task i is available at 

processor j. 

 

Using the communication schedule given in Fig. 3 one 

constructs (as defined above) the computation schedule for 

our example.  The resulting schedule is given in Fig. 4. 

 

Our four-phase algorithm is formally defined below: 

 

Four-Phase Algorithm 
Let q = Σj=1,…,cnj; //number of out-channels 

Let p = Σj=c+1,…,mnj; //number of processors and in-channels 

Step 1: Determine the processor where each task i is to be 

executed and identify the corresponding in-channel 

to be used to receive the data for task i. 

 

Construct the instance P1 of the 2-component vector 

 scheduling problem as follows. 

For each task i we define its x-component asti and  its  

y-component as di. 

Let T=min { Σti / p }, max {ti} }, 

Let D =min { Σdi/ p, max {di} } 

Let L =max { T, D } 

Construct a schedule S1 for P1 via the algorithmgiven in 

 Section 2.3.1; 

Assign all the tasks corresponding to the jobs scheduled 

on the same machine in S1 to the same processorand 

corresponding in-channel. 

 

 

Step 2: Determine the out-channel to be used to send the 

 data for task i. 

 

For each storage node k define an instance of the 

problem of scheduling independent jobs on 

identical machines. For each task stored at node k, 

define ajob with execution time equal to dj, the 

timerequired to transmit the data fortask j, and 

definethe number of machines as ck. 

 

Use list scheduling[9]to construct a non-preemptive 

schedule for each storage node. 

The combined problems are called P2 and the set 

of schedules generated is S2. 

All the tasks corresponding to the jobs assigned to the 

same machine in S2 will be using the same 

out-channel. 

// At this point we know for every task i the 

//   out-channel  and in-channel used to transmit the 

//   data it needs, as well as the processor that will 

// execute the task. 

// In the next steps we determine exactly when all of 

//    these operations take place. 

 

Step 3: Construct the communication schedule Comm, 

i.e., determine the actual time when the 

datarequired by the tasks is to be sent from the 

storagenode via the out-channel to the receiving 

processing node via the corresponding in-channel. 

 

Define the bipartite multigraph G=(S P,E). 

There is a vertex in S for each storage node and one of 

 its communication out-channels. 

There is a vertex in P for each processor in a processing 

 node and its correspondingcommunication 

in-channel. 

There is an edge from vertex i in S to vertex in j inP if 

 there is at least one task using both the out-channel 

i and the in-channel j. 

Label each edge by the set of tasks it represents.  The 

 weight of the edge { i, j } denoted by pi,j isthe total 

 communication time needed to transmit the data for 

 the tasks represented by the edge. 

Let xi = Σjpi,j andyi = Σipi,j. 

Let t= max { xi,yj }. 

Construct the preemptive schedule S3 for P3 with 

makespan t(algorithm in Ref. [13]). 

Schedule Comm, which can be easily constructed from 

S3, defines the specific times when the data fortask 

i must be transmitted from itsout-channel to its in-

channel in such a way that each in-channel and   out-

channel transports the data for at most one task at  a 

time. 
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Figure 4: Computation Schedule Constructed for our Example. 

 

 

Step 4:  Construct the computation schedule Comp. 

Construct the schedule Comp that specifies for each 

processor the order in which the tasks assigned to it 

 are to be processed.  The ordering foreach processor 

is the same one as the order in which their data 

arrivesto the processor via the in-channel. 

 

End of Four-Phase Algorithm 
 

Theorem 1:The time complexity for the four-phase 

algorithm is O(np (p+log q)) and the algorithm generates 

schedules with makespan at most four times themakespan 

of an optimal schedule. 

 

Proof:The number of tasks, processors (in-channels) and 

out-channels isn, p, and q, respectively.In Step 1 we 

construct aninstance of the 2-component scheduling 

problem.Constructing this instance takes O(n+ p) time 

andconstructing a schedule for the instance takesO(n+ p) 

time (Section 2.3.1). 

 

Step 2 constructs q instances of the identical machine 

scheduling problem.  This can be accomplished in O(n+q) 

time and constructing list schedules for all instances takes 

O(n log n) time [10]. 

 

Assigning the actual time when the data for each task is to 

be transmitted from the out-channel to the in-channel is 

determined by solving an instance of the openshop 

preemptive scheduling problem. Constructing the instance 

P3 of the openshop problem takes O(n+p+q) time. 

Constructing the schedule S3 for the openshop instance 

takes O(np (p+log q)) time, as the number of processors is 

p, the number of jobs is q and the number of non-zero tasks 

is n)[13]. 

 

Step 4 takes time O(n+q), as one uses the ordering of the 

data arriving to each processor. 

 

Hence, the overall time complexity is dominated by the 

solution to the instance P3 of the openshop problem, which 

takes O(np (p+log q)) time. 

 

Let us now determine the approximation ratio for our 

algorithm.  The total time required to process the tasks 

(makespan of the computation schedule Comp) is at most 

2L, where L is a lower bound for the total time required for 

the processing of the tasks by the p processors and a lower 

bound for the total time required to receive all the data by 

the p in-channels. The total time required to send all the 

data for the tasks by the q processors is at most 2 L', where 

L' is a lower bound for the time required to send all the data 

by the q out-channels. The solution to the openshop 

problem is a communication schedule, Comm, with 

makespan at most max { 2L, 2L' }. Since an optimal 

makespan for the whole problem, f
*
, is at least max {L, L'}, 

it then follows that our two schedules (Comm and Comp) 

have makespan at most 4 f
*
. This concludes the proof of the 

theorem. 

 

Note that we could have used different approximation 

algorithms in Steps 2 and 3 that would result in a different 

overall approximation ratio. Suppose that in Step 1 and 2 

we use approximation algorithms that generate schedules 

with makespan f1≤ k1f1
*
 and f2≤ k2f2

*
, respectively. Then the 

approximation ratio for the overall algorithm would be k2+ 

max { k1, k2}. 

 

As you can see, four our example the schedule that we 

construct has makespan 235 which is about 60% of the 

worst case one (remember that 4L=400). From the proof of 

Theorem 1 one can gather that the time complexity is 

dominated by the time required to solve the openshop 

problem P3. One way to improve the time complexity at the 

expense of generating solutions whose objective function 

value is farther from optimal, is to replace the optimal 

preemptive scheduling algorithm for the openshop problem 

by one that generates sub-optimal solutions.  The sub-

optimal algorithm is the list schedule algorithm discussed 

in Section 2.2. Constructing the sub-optimal schedule for 

the instance of the openshop problem takes  O(n log q) time 

and generates a schedule with makespan at most 4L.  

Combining it with the computation schedule we generate a 

schedule with makespan at most 6 times the optimal one, 

and the time complexity is dominated by O(n log q). Now, 
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suppose that we use an approximation algorithm for the 

openshop problem that generates solutions such thatf3≤k3f3
*
. 

Then the approximation ratio for the overall algorithm 

becomes k2 + k3max { k1,k2 }, wherek1 and k2 are as define 

above. Table captions appear centered above the table in 

upper and lower case letters. When referring to a table in 

the text, no abbreviation is used and "Table" is capitalized. 

 

4. GENERALIZATIONS 

In this section we consider several generalizations of our 

problem. The first one addresses the problem when the 

tasks required data resides in more than one node, the 

second one deals with the problem when tasks have output 

files to be stored at the storage nodes, and the third one 

addresses the case when the output files for each task may 

reside in multiple nodes. In all cases we show how to 

extend our approximation algorithm to provide constant 

ratio approximations to these problems. 

 

 

4.1. Multiple Data Files 

 

Consider now the situation when data for each task resides 

in one or more storage nodes. We use the vector Si to 

indicate the nodes where the task's data resides. 

Corresponding to each vector Si there is a vector Di whose 

j
th

 component indicates the time required to transfer the 

data for task Si stored at the node specified by the 

j
th

component of the Si vector. 

 

The approximation algorithm for the basic case given in the 

Section 3 can be easily generalized to solve this problem.  

The first phase is exactly as before, except that di is equal 

to the sum of all of the values in vector Di.  Remember that 

in this phase we determine the processor where each task is 

to be processed so that the communication and processing 

times are balanced.  The second phase, where we determine 

the out-channel for the data for each program, is in 

principle identical to the one in Section 3. The difference is 

that each task uses an out-channel on each node where its 

data resides. The third step is identical to the one in Section 

3, since we know for each data file its out-channel and in-

channel. The fourth phase, where we determine the 

processing order for the tasks, is identical to the previous 

one, except that we have to take into consideration that all 

the data for a task must arrive at the processing node before 

one can begin the processing of the task. 

 

The approximation ratio for this case is identical to the one 

in the Section 3.  The time complexity bound is similar to 

the previous one after taking into consideration the fact that 

there is more input in this case than for the basic problem. 

 

4.2. Tasks Generating Output Files. 

 

Let’s consider the case where each task i creates an output 

file which is to be stored at a given storage node si
’
.  The 

restriction is that the file will be available for transmission 

only after the processing of the task has completed.  Letoi 

the time required to transfer the file.  This problem is 

significantly harder than the basic one as one must not only 

balance the transfer time (for the input data) and the 

processing time, but also the transfer time for the output 

files. 

 

The idea behind the approximation algorithm is similar to 

the one for the basic case. One important difference is that 

instead of using an approximation algorithm for the 2-

component vector scheduling problem we use one for the 

three-component problem. 

 

The schedules generated by our algorithm consist of three 

parts: an input communication schedule for the input data 

communications, a computation schedule for the processing 

of the tasks, and anoutputcommunication schedule for 

transferring the output files. We initially classify our 

approximation technique as ``restriction,'' since we 

construct three separate schedules. Then we try to overlap 

the three schedules as much as possible. Since the tasks are 

processed in the same order in which their data arrives in 

the in-channel associated with the processor, most of the 

time it is possible to overlap at least portions of the first 

two schedules.  However the transmission of the output 

files might not be in the same order in which the processing 

of the tasks is performed, so the overlapping of the 

computation and the output communication schedule is 

limited and in the worst case non-existent. So our 

approximation technique is ``restriction'' followed by a 

posteriori ``overlapping''. The general approach for our 

algorithm is as follows. 

 

 Determine the processor where each task i is to be 

executed, identify the corresponding in-channel to 

be used to receive the input data for task i, and 

identify the out-channel to set  the output file for 

task i. 

 Determine the out-channel to be used to send the 

input data for all tasks. 

 Construct the input communication schedule In-

Comm, i.e., determine the actual time when the 

input data required by the tasks is to be sent from 

the storage node via the out-channel to the 

receiving processing node via the in-channels. 

 Construct the computation schedule Comp, i.e., 

determine the actual time when each task is to be 

processed. 

 Determine the in-channel to be used to receive the 

output file for task i. 

 Construct the output communication schedule 

Out-Comm, i.e., determine the actual time when 

the output file generated by the tasks is to be sent 

from the processing node via the out-channel to 

the receiving storage node via the in-channels. 

 

The above steps are implemented by constructing schedules 

for several problems. The first step is implemented by 

solving a three-component vector scheduling problem; Step 

2 by scheduling sets of independent jobs on sets of identical 

machines; the third one by solving an openshop scheduling 
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problem; and the forth one, the simplest one, as the 

processing ordering for the tasks is determined by the 

ordering of the data arriving to the processor. Step 5 is 

implemented by scheduling sets of independent jobs on sets 

of identical machines; Step 6 is implemented by solving an 

openshop scheduling problem. In what follows we explain 

all the steps in our procedure. 

 

Step 1:Determine the processor, in-channel, and out-

channelto be used to process,receive the input data, and 

send the output file for each task, respectively.This is 

accomplished by constructinga schedule S1 by any 

approximation algorithmfor the three-component vector 

scheduling problem P1 defined below.Let p be the total 

number of processors (as well as the number ofin-channels 

and out-channels)at the processing nodes, i.e., 

p = Σj=w+1, …, m n_j. 

The first nw+1 processors are located atnode w+1, the next 

nw+2 processors at node w+2,and so on. 

 

We construct the instance P1 of the three-component vector 

scheduling problem as follows.For each task i, we define 

job i with its x-component as ti,its y-component as di, and 

its z-component as oi.Define 

 

T= min { Σti / p,  max {ti } }, 

D= min { Σdi /p, max {di } }, 

O = min { Σoi /p, max { oi } }, and 

L = max { T, D, O }. 

 

Clearly the x-component, y-component and z-componentof 

each one of the tasks is a value between 0 and L.  The 

sumof the x-component, y-component, and z-component of 

all the tasksis at most pL,respectively.We construct a 

schedule S1 for the instance P1by using any polynomial 

time approximation algorithm for the three-

componentvector scheduling problem.All the tasks 

assigned to the same machine in schedule S1are assigned to 

the same processor for their executionand their data is to be 

received by thein-channel corresponding to the 

processorand the output file is to be sent using the out-

channel correspondingto the processor. 

There is an approximation algorithm that assigns tasks to 

the same machine (in schedule S1) in such a way that 

thesum of their x-component is at most 3L,sum of their y-

component is at most 3L and thesum of their z-component 

is at most 3L (Section 2.3).Therefore,every processor will 

be running tasks for at most 3Ltime units, every in-channel 

will be receiving data forat most 3L units of time, and every 

out-channel willbe sending output data for at most 3L units 

of time(later on we specify the actual schedules when 

theseoperations take place). 

 

Step 2:Now let’s decide the out-channel to be used to send 

the data for each taskto the processor where the task is to be 

executed.Let q be the total number ofout-channels in the 

storage nodes,q = Σj=1, …, wcj (remembercj is the number of 

out-channels in node j).For every storage node k, our 

algorithmpartitions the tasks' data stored in itinto cj 

groups.The data for each task assigned to each group is to 

be sentvia a different out-channel to the nodewhere the 

processing of the task will take place.This partitioning 

should be in such a way that the sum of the 

communicationtimes of all the data for the tasksassigned to 

the out-channels is balanced as much as possible, as this 

willdecrease the total communication time.We use the same 

algorithm as in the Section 3 forthis step. 

 

To summarize the first two steps, we have determined for 

every task i the out-channel to be used to send the input 

data it needs as well as the in-channel that will receive it, 

and the corresponding processor where the task will be 

executed. We need to determine the actual time when the 

data for each task is to be transmitted and the time at which 

the tasks are to be processed in such a way that there are no 

communication conflicts, i.e., the data for two or more 

tasks is not being sent or received by the same channel at 

the same time, and the processing of a task cannot start 

before the processor has all the task's data. In other words, 

we need to construct the input communication schedule, In-

Comm, and the computation schedule Comp, and the output 

communication schedule Out-Comm. 

 

Step 3:The timing of all the communication eventsin the In-

Commschedule is obtained by modeling theproblem as an 

openshop scheduling problem and then constructing a 

schedule for itas we did in Section 3. 

 

Step 4:The computation schedule Comp is constructed as in 

Section3. 

 

Now we know the out-channel and the in-channel for all 

the output data files. The actual timing for all the 

communications (Out-Comm  schedule) is determined in 

the next steps. 

 

Step 5:In this step we determine the in-channel for each 

output file. This operation isexactly like Step 2 in Section 

3, except that we use the in-channels in the storagenodes 

and the tasks' output files. 

 

Step 6:In this portion we construct the Out-Comm schedule.  

This is exactly asStep 3 in Section 3, but with the out-

channels located at the processing nodesand the in-channels 

located at the storage nodes. 

 

The above steps can be easily formalize into the six-phase 

approximation algorithm. The following theorem can be 

established by using arguments similar to those in used in 

the proof of Theorem 1. 

Theorem 2:The time complexity of algorithmsix-phase is 

O(np (p+log q) + nq (q + log p)) and the algorithm 

generates schedules with makespan at most six times the 

makespan of an optimal schedule. 

 

As in Section 3 we note that we could have used different 

approximation algorithm in Steps 1 and 2 (with 

approximation ratios k1 and k2). Also in Step 3 we could 

have used an approximation algorithm with approximation 
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ratio k3. Suppose that in Step 5 we use an approximation 

algorithm that generates schedules with makespan 

f5≤ k5f5
*
. Then the approximation ratio for the algorithm is 

k2 + k3 * max { k1 ,k2 }+ k3 *max { k1 , k5 }. 

 

V.3. Multiple Output Files 

 

Suppose now that each task creates multiple files to be 

stored in one or more storage nodes.  In this case we use the 

vector Si
’
 to indicate the nodes where the task output files 

will be stored.  Corresponding to each vector Si
’
 there is a 

vector Di
’
 whose j

th
component indicates the time required 

to transfer the data for task i stored at the node specified by 

the j
th

 component of vector Si
’
. 

 

We extend the approximation algorithm given in Section 

4.2 to this problem as follows.  The main differences are in 

the last two steps which are now similar to the ones for 

multiple input files for the algorithm given in Section 4.1. 

 

The approximation ratio for this case is identical to the one 

in the Section 4.2.  The time complexity bound is similar to 

the one in Section 4.2 after taking into consideration the 

fact that the size of the input is larger than for that problem. 

5. DISCUSSION 

We have presented a four-phase algorithm that takes 

O(np (p+log q)) time and generates schedules with 

makespan at most four times the makespan of an optimal 

schedule for the case when the set of nodes is partitioned 

into storage and processing nodes. Recall that n is the 

number of tasks, p is the number of channels in the storage 

nodes, and q is the number of channels in the processing 

nodes. We have shown that the time complexity bound can 

be decreased to O(n log q), but then we can only guarantee 

solutions that are within six times the optimal one. We also 

showed how to generalize our algorithm for the case when 

there are output files for each task as well as for the case 

when there are multiple input data files and output data 

files for each task. 

 

Another interesting problem is to transform our 

algorithms to distributed ones.  The portion that is 

transformable to a distributed on-line algorithm is the 

solution to the openshop problem by using the algorithm 

developed by Anderson and Miller [20]at the expense of 

generating solutions farther from optimal.  However one 

needs to solve on-line the other scheduling problems.  List 

scheduling is an on-line algorithm, but it is not a distributed 

one.  Transforming it to a distributed one as well as 

transforming our algorithm for the 2-component vector 

scheduling problem, while maintaining the same 

approximation ratios and at the same time decreasing 

significantly their time complexity bounds  are challenging 

open problems. 

 

Another interesting variation of our problem is when 

nodes may be used for storage and processing, as well as 

when the communication times depend  on the source and 

destination nodes and the processing speeds of the 

processors depends on the task being processed. These are 

more realistic variations of our problem; however, it is not 

clear whether or not there exist efficient constant ratio 

approximation algorithms for these problems. 

 

A conclusion section must be included and should indicate 

clearly the advantages, limitations, and possible 

applications of the paper.  Although a conclusion may 

review the main points of the paper, do not replicate the 

abstract as the conclusion. A conclusion might elaborate on 

the importance of the work or suggest applications and 

extensions.  
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Appendix I 
In Fig. 3 you will find the schedule S3 constructed for the 

algorithm given in Ref. [13] for the instance P3 of the 

openshop problem given in Table 7. Fig. 5 you will find the 

same schedule, but with respect to the out-channels. I.e., 

the horizontal axis represents time and the rows correspond 

to the out-channels. Each block assignment is labeled with 

a task index and the in-channel used to receive the data 

communication. 
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Figure 5: Out-Channel Communication Schedule Constructed for Problem P3for our Example. 

 

 

 


